Suppr超能文献

一种基于高效密集连接网络的恶意软件检测深度学习模型。

An Efficient DenseNet-Based Deep Learning Model for Malware Detection.

作者信息

Hemalatha Jeyaprakash, Roseline S Abijah, Geetha Subbiah, Kadry Seifedine, Damaševičius Robertas

机构信息

Department of Computer Science and Engineering, AAA College of Engineering and Technology, Sivakasi 626123, Tamil Nadu, India.

School of Computer Science and Engineering, Vellore Institute of Technology-Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, Tamil Nadu, India.

出版信息

Entropy (Basel). 2021 Mar 15;23(3):344. doi: 10.3390/e23030344.

Abstract

Recently, there has been a huge rise in malware growth, which creates a significant security threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to defend against malware threats, malware developers discover new ways to evade these defense techniques. Traditional static and dynamic analysis methods are ineffective in identifying new malware and pose high overhead in terms of memory and time. Typical machine learning approaches that train a classifier based on handcrafted features are also not sufficiently potent against these evasive techniques and require more efforts due to feature-engineering. Recent malware detectors indicate performance degradation due to class imbalance in malware datasets. To resolve these challenges, this work adopts a visualization-based method, where malware binaries are depicted as two-dimensional images and classified by a deep learning model. We propose an efficient malware detection system based on deep learning. The system uses a reweighted class-balanced loss function in the final classification layer of the DenseNet model to achieve significant performance improvements in classifying malware by handling imbalanced data issues. Comprehensive experiments performed on four benchmark malware datasets show that the proposed approach can detect new malware samples with higher accuracy (98.23% for the Malimg dataset, 98.46% for the BIG 2015 dataset, 98.21% for the MaleVis dataset, and 89.48% for the unseen Malicia dataset) and reduced false-positive rates when compared with conventional malware mitigation techniques while maintaining low computational time. The proposed malware detection solution is also reliable and effective against obfuscation attacks.

摘要

最近,恶意软件增长迅猛,这对组织和个人构成了重大安全威胁。尽管网络安全研究一直在不懈努力抵御恶意软件威胁,但恶意软件开发人员仍不断找到新方法来规避这些防御技术。传统的静态和动态分析方法在识别新恶意软件方面效果不佳,且在内存和时间方面开销很大。基于手工制作特征训练分类器的典型机器学习方法在应对这些规避技术时也不够强大,并且由于特征工程需要付出更多努力。最近的恶意软件检测器显示,由于恶意软件数据集的类不平衡,其性能有所下降。为了解决这些挑战,这项工作采用了一种基于可视化的方法,即将恶意软件二进制文件描绘为二维图像,并由深度学习模型进行分类。我们提出了一种基于深度学习的高效恶意软件检测系统。该系统在DenseNet模型的最终分类层中使用重新加权的类平衡损失函数,通过处理数据不平衡问题,在恶意软件分类方面实现了显著的性能提升。在四个基准恶意软件数据集上进行的综合实验表明,与传统的恶意软件缓解技术相比,该方法能够以更高的准确率检测新的恶意软件样本(Malimg数据集为98.23%,BIG 2015数据集为98.46%,MaleVis数据集为98.21%,未见过的Malicia数据集为89.48%),并降低误报率,同时保持较低的计算时间。所提出的恶意软件检测解决方案在应对混淆攻击时也可靠且有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f8/7998822/87ea0fd0985c/entropy-23-00344-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验