Zhou Ting, Li Dandan, Zuo Jingfang, Gu Aihua, Zhao Li
Jiangsu Provincial Cancer Hospital, Nanjing, Jiangsu, China.
School of Automation and Software Engineering, Shanxi University, Taiyuan, Shanxi, China.
PeerJ Comput Sci. 2025 Jun 20;11:e2969. doi: 10.7717/peerj-cs.2969. eCollection 2025.
The study aims to address the challenges of nursing decision-making and the optimization of personalized nursing plans in the management of hemorrhagic stroke. Due to the rapid progression and high complexity of hemorrhagic stroke, traditional nursing methods struggle to cope with the challenges posed by its high incidence and high disability rate.
To address this, we propose an innovative approach based on multimodal data fusion and a non-stationary Gaussian process model. Utilizing multidimensional data from the MIMIC-IV database (including patient medical history, nursing records, laboratory test results, .), we developed a hybrid predictive model with a multiscale kernel transformer non-stationary Gaussian process (MSKT-NSGP) architecture to handle non-stationary time-series data and capture the dynamic changes in a patient's condition.
The proposed MSKT-NSGP model outperformed traditional algorithms in prediction accuracy, computational efficiency, and uncertainty handling. For hematoma expansion prediction, it achieved 85.5% accuracy, an area under the curve (AUC) of 0.87, and reduced mean squared error (MSE) by 18% compared to the sparse variational Gaussian process (SVGP). With an inference speed of 55 milliseconds per sample, it supports real-time predictions. The model maintained a confidence interval coverage near 95% with narrower widths, indicating precise uncertainty estimation. These results highlight its potential to enhance nursing decision-making, optimize personalized plans, and improve patient outcomes.
本研究旨在应对出血性中风管理中护理决策的挑战以及优化个性化护理计划。由于出血性中风进展迅速且高度复杂,传统护理方法难以应对其高发病率和高致残率带来的挑战。
为解决这一问题,我们提出了一种基于多模态数据融合和非平稳高斯过程模型的创新方法。利用MIMIC-IV数据库中的多维数据(包括患者病史、护理记录、实验室检查结果等),我们开发了一种具有多尺度内核变压器非平稳高斯过程(MSKT-NSGP)架构的混合预测模型,以处理非平稳时间序列数据并捕捉患者病情的动态变化。
所提出的MSKT-NSGP模型在预测准确性、计算效率和不确定性处理方面优于传统算法。对于血肿扩大预测,其准确率达到85.5%,曲线下面积(AUC)为0.87,与稀疏变分高斯过程(SVGP)相比,均方误差(MSE)降低了18%。推理速度为每样本55毫秒,支持实时预测。该模型保持了接近95%的置信区间覆盖率且宽度更窄,表明不确定性估计精确。这些结果凸显了其在加强护理决策、优化个性化计划和改善患者预后方面的潜力。