Suppr超能文献

用于多模态虚假房地产列表检测的双层融合中的类加权邓普斯特-谢弗方法

Class-weighted Dempster-Shafer in dual-level fusion for multimodal fake real estate listings detection.

作者信息

Mohd Amin Maifuza, Sani Nor Samsiah, Nasrudin Mohammad Faidzul

机构信息

Science and Information Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.

出版信息

PeerJ Comput Sci. 2025 May 27;11:e2797. doi: 10.7717/peerj-cs.2797. eCollection 2025.

Abstract

BACKGROUND

Detecting fake multimodal property listings is a significant challenge in online real estate platforms due to the increasing sophistication of fraudulent activities. The existing multimodal data fusion methods have several limitations and strengths in identifying fraudulent listings. Single-level fusion models whether at the feature, decision, or intermediate level struggle with balancing the contributions of different modalities leading to suboptimal decision-making. To address these problems, a dual-level fusion from multimodal for fake real estate listings detection is proposed. The dual-level fusion allows the integration of detailed features from text and image data to be performed at an early stage, followed by the metadata fusion at the decision stage in order to obtain a more comprehensive final classification. Furthermore, a new weighting scheme is introduced to optimize Dempster-Shafer in decision fusion to help the model achieve optimal performance and as a result, our method improves the classification. The Dempster-Shafer without class weightage lacks the flexibility to adapt to varying levels of uncertainty or importance across different classes.

METHODS

In Class Weighted Dempster-Shafer in Dual Level Fusion (CWDS-DLF), we employ advanced models (XLNet for text and ResNet101 for images) for feature extraction and use the Dempster-Shafer theory for decision fusion. A new weighting scheme, based on Bayesian optimization, was used to assign optimal weights to the 'fake' and 'not fake' classes, thereby enhancing the Dempster-Shafer theory in the decision fusion process.

RESULTS

The CWDS-DLF was evaluated on the property listing website dataset and achieved an F1 score of 96% and an accuracy of 93%. A t-test confirms the significance of these improvements ( < 0.05), demonstrating the effectiveness of our method in detecting fake property listings. Compared to other models, including 2D-convolutional neural network (CNN), XGBoost, and various multimodal approaches, our model consistently outperforms in precision, recall, and F1-score. This underscores the potential of integrating multimodal analysis with sophisticated fusion techniques to enhance the detection of fake property listings, ultimately improving consumer protection and operational efficiency in online real estate platforms.

摘要

背景

由于欺诈活动日益复杂,在在线房地产平台中检测虚假多模态房产列表是一项重大挑战。现有的多模态数据融合方法在识别欺诈列表方面有若干局限性和优势。单级融合模型,无论是在特征、决策还是中间级别,都难以平衡不同模态的贡献,导致决策欠佳。为解决这些问题,提出了一种用于检测虚假房地产列表的多模态双级融合方法。双级融合允许在早期阶段对文本和图像数据的详细特征进行整合,随后在决策阶段进行元数据融合,以获得更全面的最终分类。此外,引入了一种新的加权方案来优化决策融合中的德普斯特 - 谢弗理论,以帮助模型实现最佳性能,从而提高了分类效果。没有类加权的德普斯特 - 谢弗理论缺乏适应不同类别的不确定性或重要性变化水平的灵活性。

方法

在双级融合中的类加权德普斯特 - 谢弗理论(CWDS - DLF)中,我们采用先进模型(用于文本的XLNet和用于图像的ResNet101)进行特征提取,并使用德普斯特 - 谢弗理论进行决策融合。一种基于贝叶斯优化的新加权方案被用于为“假”和“非假”类别分配最优权重,从而在决策融合过程中增强德普斯特 - 谢弗理论。

结果

CWDS - DLF在房产列表网站数据集上进行了评估,F1分数达到96%,准确率为93%。t检验证实了这些改进的显著性(<0.05),证明了我们的方法在检测虚假房产列表方面的有效性。与其他模型相比,包括二维卷积神经网络(CNN)、XGBoost和各种多模态方法,我们的模型在精确率、召回率和F1分数方面始终表现更优。这凸显了将多模态分析与复杂融合技术相结合以增强虚假房产列表检测的潜力,最终提高在线房地产平台中的消费者保护和运营效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验