Goel Rajat, Goldman Nir, Kulkarni Ambarish R
Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States.
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
J Phys Chem C Nanomater Interfaces. 2025 Jun 4;129(24):11086-11092. doi: 10.1021/acs.jpcc.5c01120. eCollection 2025 Jun 19.
Hydrogen induced corrosion of uranium, which leads to the formation of toxic and pyrophoric UH, raises significant safety concerns for long-term storage of nuclear materials. Previous work suggests hydrogen diffuses through the grain boundaries (GBs) of the passivating oxide layer to initiate hydriding reactions. However, the atomistic mechanisms underlying this phenomenon and the structural factors that control its initiation are not well understood. To address this knowledge gap, here we use a high-throughput density functional theory (DFT) workflow to investigate the adsorption of H and H in the defective bulk UO. Specifically, we have exhaustively investigated the adsorption of H (107 sites) and H (26 sites) in three different coincident site lattice (CSL) GBs: Σ3, Σ5, and Σ9. Compared to the binding energies in pristine UO, we observe significantly stronger hydrogen adsorption at these GB sites. Interestingly, we find that the trends in H and H adsorption vary considerably across the three GB models. In particular, while a small number of sites in Σ5 and Σ9 show exothermic adsorption of H and H, respectively, no such sites are found in Σ3. These results provide fundamental atomistic insights that could guide the development of future corrosion mitigation strategies for the storage of nuclear materials.
氢引发的铀腐蚀会导致形成有毒且易燃的氢化铀,这给核材料的长期储存带来了重大安全隐患。先前的研究表明,氢通过钝化氧化层的晶界扩散,从而引发氢化反应。然而,这种现象背后的原子机制以及控制其引发的结构因素尚不清楚。为了填补这一知识空白,我们在此使用高通量密度泛函理论(DFT)工作流程,研究氢原子和氢离子在有缺陷的块状UO中的吸附情况。具体而言,我们详尽研究了氢原子(107个位点)和氢离子(26个位点)在三种不同的重合位置点阵(CSL)晶界:Σ3、Σ5和Σ9中的吸附情况。与在原始UO中的结合能相比,我们观察到在这些晶界位点处氢的吸附明显更强。有趣的是,我们发现氢原子和氢离子在这三种晶界模型中的吸附趋势差异很大。特别是,虽然在Σ5和Σ9中有少量位点分别显示出氢原子和氢离子的放热吸附,但在Σ3中未发现此类位点。这些结果提供了基本的原子层面见解,可指导未来核材料储存腐蚀缓解策略的开发。