Wang Yingying, Custead Rebecca, Oh Hyuntaek, Barlow Steven M
Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, USA.
Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA.
Neuroimage Rep. 2022 Jan 16;2(1):100081. doi: 10.1016/j.ynirp.2022.100081. eCollection 2022 Mar.
The effective connectivity of neuronal networks during orofacial pneumotactile stimulation with different velocities is still unknown. The present study aims to characterize the effectivity connectivity elicited by three different saltatory velocities (5, 25, and 65 cm/s) over the lower face using dynamic causal modeling on functional magnetic resonance imaging data of twenty neurotypical adults. Our results revealed the contralateral SI and SII as the most likely sources of the driving inputs within the sensorimotor network for the pneumotactile stimuli, suggesting parallel processing of the orofacial pneumotactile stimuli. The 25 cm/s pneumotactile stimuli modulated forward interhemispheric connection from the contralateral SII to the ipsilateral SII, suggesting a serial interhemispheric connection between the bilateral SII. Moreover, the velocity pneumotactile stimuli influenced the contralateral M1 through contralateral SI and SII, indicating that passive pneumotactile stimulation may positively impact motor function rehabilitation. Furthermore, the medium velocity 25 cm/s pneumotactile stimuli modulated both forward and backward connections between the right cerebellar lobule VI and the contralateral left SI and M1. This result suggests that the right cerebellar lobule VI plays a role in the sensorimotor network through feedforward and feedback neuronal pathways. This study is the first to map similarities and differences of effective connectivity across the three-velocity orofacial pneumotactile stimulation. Our findings shed light on the potential therapeutic use of passive orofacial pneumotactile stimuli using the Galileo system.
在不同速度的口面部气动触觉刺激过程中,神经网络的有效连接性仍不清楚。本研究旨在利用动态因果模型,对20名神经典型成年人的功能磁共振成像数据进行分析,以表征三种不同跳跃速度(5、25和65厘米/秒)对下脸部产生的有效连接性。我们的结果显示,对侧体感皮层(SI)和次级体感皮层(SII)是气动触觉刺激感觉运动网络中驱动输入的最可能来源,这表明口面部气动触觉刺激是并行处理的。25厘米/秒的气动触觉刺激调节了从对侧SII到同侧SII的前向半球间连接,这表明双侧SII之间存在串行半球间连接。此外,不同速度的气动触觉刺激通过对侧SI和SII影响对侧初级运动皮层(M1),这表明被动气动触觉刺激可能对运动功能康复产生积极影响。此外,中等速度25厘米/秒的气动触觉刺激调节了右侧小脑小叶VI与对侧左侧SI和M1之间的前向和反向连接。这一结果表明,右侧小脑小叶VI通过前馈和反馈神经元通路在感觉运动网络中发挥作用。本研究首次绘制了三种速度的口面部气动触觉刺激有效连接性的异同。我们的研究结果为使用伽利略系统进行被动口面部气动触觉刺激的潜在治疗应用提供了线索。