Sur Aishanee, Sarkar Subham, Jernigan Nicholas B, Bhuvanesh Nattamai, Powers David C
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
ACS Catal. 2025 Jun 2;15(12):10328-10335. doi: 10.1021/acscatal.5c01083. eCollection 2025 Jun 20.
Metal-organic frameworks (MOFs) are attractive platforms that merge concepts of homogeneous and heterogeneous catalysis. Catalyst design and optimization are enabled by an array of synthetic methods that offer independent control over the local chemical structure of lattice-embedded metal ions (i.e., ligand identity and geometry) and the long-range materials properties (i.e., porosity). Establishing the origin of catalytic activity in MOF-promoted reactions remains a significant challenge: The relative rates of catalyst turnover and substrate diffusion dictate the extent to which interstitial sites are accessible and operational in catalysis. To minimize the contributions of surface sites in catalysis, materials with large pore dimensions are often sought, however, the impact of pore expansion on the origins of catalytic activity is similarly challenging to establish. Here, we describe TAM-3, a Co-(II) based MOF with accessible metal sites supported by a facially coordinating -tetrazole ligand set. TAM-3 features large channel-like pores (17 × 23 Å) and promotes aerobic C-H oxidation and olefin epoxidation. Using a set of simple kinetics experiments, based on the analysis of kinetic isotope effects and olefin oxidation diastereoselectivities, we demonstrate that despite the large pores, interstitial metal ions do not significantly contribute to the observed substrate oxidation. This study highlights the importance of conducting kinetic experiments to assess the origin of apparent catalytic activity with MOFs and the challenge of harnessing reactive oxidants with microporous catalyst materials.
金属有机框架(MOFs)是融合了均相催化和多相催化概念的有吸引力的平台。一系列合成方法实现了催化剂的设计和优化,这些方法能够独立控制晶格嵌入金属离子的局部化学结构(即配体特性和几何结构)以及远程材料特性(即孔隙率)。确定MOF促进反应中催化活性的来源仍然是一项重大挑战:催化剂周转和底物扩散的相对速率决定了间隙位点在催化中可及和起作用的程度。为了最小化表面位点在催化中的贡献,通常会寻求具有大孔径尺寸的材料,然而,孔隙扩张对催化活性来源的影响同样难以确定。在这里,我们描述了TAM-3,一种基于Co-(II)的MOF,其具有由面配位的四唑配体集支撑的可及金属位点。TAM-3具有大的通道状孔隙(17×23 Å),并促进需氧C-H氧化和烯烃环氧化。通过一组基于动力学同位素效应和烯烃氧化非对映选择性分析的简单动力学实验,我们证明尽管孔隙很大,但间隙金属离子对观察到的底物氧化没有显著贡献。这项研究强调了进行动力学实验以评估MOFs表观催化活性来源的重要性,以及利用微孔催化剂材料利用活性氧化剂的挑战。