Suppr超能文献

对依赖于S-腺苷甲硫氨酸(SAM)的氟化酶形成碳-卤键的催化机制和选择性的见解。

Insights into the Catalytic Mechanism and Selectivity of -Adenosyl Methionine (SAM)-Dependent Fluorinase toward Carbon-Halogen Bond Formation.

作者信息

Gutiérrez-Sánchez Néstor, Kästner Johannes, Mendizábal Fernando, Miranda-Rojas Sebastián

机构信息

Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, 8370146 Santiago, Chile.

Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

出版信息

J Chem Inf Model. 2025 Jul 14;65(13):6998-7012. doi: 10.1021/acs.jcim.5c00544. Epub 2025 Jun 26.

Abstract

Halogenases are enzymes that incorporate halogens with high regioselectivity into biosynthetic precursors. Fluorinase, an -adenosyl methionine (SAM)-dependent halogenase, catalyzes the formation of carbon-halogen bonds through an S2 reaction, converting SAM into 5'-fluoro-5'-deoxyadenosine (5'-FDA) using the fluoride ion (F) as substrate. Fluorinase exhibits a high degree of efficiency in forming C-F bonds, a moderate level of efficiency in forming C-Cl bonds, and no activity in forming C-Br bonds. This study presents a comprehensive quantum chemical analysis of the reaction mechanism and its selectivity for C-X (X = F, Cl, and Br) bond formation in fluorinase. To this end, the complete reaction pathway was obtained and characterized using physicochemical descriptors to obtain chemical insights into the inner workings of the enzyme. Our results reveal an energy barrier height of 19.5, 24.4, and 25.3 kcal/mol for the fluorination, chlorination, and bromination processes, respectively; where the electronic contributions (Δ) dominate the catalytic efficiency of fluorinase. Thus, the selectivity among halogens is mainly governed by electronic work () and the orbital interactions energy (Δ). Therefore, as the proton affinity of the nucleophile decreases, the interaction between the nucleophile and SAM results in a higher reaction barrier.

摘要

卤化酶是一类能将卤素以高区域选择性方式掺入生物合成前体的酶。氟代酶是一种依赖于S-腺苷甲硫氨酸(SAM)的卤化酶,通过S2反应催化碳-卤键的形成,以氟离子(F⁻)为底物将SAM转化为5'-氟-5'-脱氧腺苷(5'-FDA)。氟代酶在形成C-F键方面表现出高度的效率,在形成C-Cl键方面效率中等,而在形成C-Br键方面没有活性。本研究对氟代酶中C-X(X = F、Cl和Br)键形成的反应机制及其选择性进行了全面的量子化学分析。为此,获得了完整的反应途径并用物理化学描述符进行了表征,以深入了解该酶的内部作用机制。我们的结果表明,氟化、氯化和溴化过程的能垒高度分别为19.5、24.4和25.3千卡/摩尔;其中电子贡献(Δ)主导了氟代酶的催化效率。因此,卤素之间的选择性主要由电子功(ω)和轨道相互作用能(ΔE)决定。所以,随着亲核试剂的质子亲和力降低,亲核试剂与SAM之间的相互作用导致更高的反应能垒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验