Kobiałka Michał, Świerczewski Dariusz, Walczak Marcin, Urbańczyk Weronika
Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
Faculty of Mathematics and Natural Sciences, Jan Długosz University, Częstochowa, Poland.
mSystems. 2025 Jun 26:e0060325. doi: 10.1128/msystems.00603-25.
Among the Hemiptera insects, a widespread way of feeding is sucking sap from host plants. Due to their nutrient-poor diet, these insects enter into obligate symbiosis with their microorganisms involved in the synthesis of components essential for host survival. However, within the Cicadellidae family, there is a relatively large group of mesophyll feeders-Typhlocybinae-that is considered to be devoid of obligate symbiotic companions. In this work, we examine the composition of microorganisms in this subfamily and compare the results with their close relatives-the Eurymelinae subfamily. To study the microbiome, we used high-throughput next-generation sequencing (NGS, Illumina) and advanced microscopic techniques, such as transmission electron microscopy (TEM) and fluorescence hybridization (FISH), in a confocal microscope. In the bodies of Typhlocybinae insects, we did not detect the presence of microorganisms deemed to be obligate symbionts. Their microbial communities consist of facultative symbionts, mainly alphaproteobacteria such as or as well as others that can be considered as facultative, including , , , , , , , and . On the other hand, the Eurymelinae group is characterized by a high diversity of microbial communities, both obligate and facultative, similar to other Cicadomorpha. We find co-symbionts involved in the synthesis of essential amino acids such as , betaproteobacteria or gammaproteobacteria . In other representatives, we observed symbiotic yeast-like fungi from the family Ophiocordycipitaceae or bacteria inhabiting the interior of bacteria. Additionally, we investigated some aspects of symbiont transmission and the phylogeny of symbiotic organisms and their hosts.
The Typhlocybinae and Eurymelinae leafhoppers differ significantly in their symbiotic communities. They have different diets, as Typhlocybinae insects feed on parenchyma, which is richer in nutrients, while Eurymelinae, like most representatives of Auchenorrhyncha, consume sap from the phloem fibers of plants. Our work presents comprehensive studies of 42 species belonging to the two above-mentioned, and so far poorly known, Cicadomorpha subfamilies. Phylogenetic studies indicate that the insects from the studied groups have a common ancestor. The diet shift in the Typhlocybinae leafhoppers contributed to major changes in the composition of microorganisms inhabiting the body of these insects. Research on the impact of diet on the microbiome and the subsequent consequences on the evolution and adaptation of organisms plays an important role in the era of climate change.
在半翅目昆虫中,一种广泛的取食方式是从寄主植物中吸食汁液。由于它们的食物营养匮乏,这些昆虫与参与合成寄主生存必需成分的微生物形成专性共生关系。然而,在叶蝉科中,有一个相对较大的叶肉取食者群体——小叶蝉亚科,被认为没有专性共生伙伴。在这项研究中,我们研究了该亚科中微生物的组成,并将结果与其近亲——广头叶蝉亚科进行比较。为了研究微生物群落,我们使用了高通量下一代测序(NGS,Illumina)以及先进的显微镜技术,如透射电子显微镜(TEM)和共聚焦显微镜下的荧光杂交(FISH)。在小叶蝉亚科昆虫体内,我们未检测到被认为是专性共生菌的微生物存在。它们的微生物群落由兼性共生菌组成,主要是α-变形菌,如 或 ,以及其他可被视为兼性的微生物,包括 、 、 、 、 、 、 、 和 。另一方面,广头叶蝉亚科群体的特点是微生物群落具有高度多样性,包括专性和兼性共生菌,这与其他角蝉总科昆虫相似。我们发现了参与合成必需氨基酸的共生菌,如 、β-变形菌 或γ-变形菌 。在其他代表物种中,我们观察到了来自蛇形虫草科的共生酵母样真菌或栖息在 细菌内部的 细菌。此外,我们还研究了共生菌传播的一些方面以及共生生物及其寄主的系统发育。
小叶蝉亚科和广头叶蝉亚科叶蝉的共生群落存在显著差异。它们的食性不同,小叶蝉亚科昆虫取食富含营养的叶肉,而广头叶蝉亚科,像大多数角蝉总科代表物种一样,取食植物韧皮纤维中的汁液。我们的工作对上述两个迄今为止鲜为人知的角蝉总科亚科的42个物种进行了全面研究。系统发育研究表明,所研究群体中的昆虫有一个共同的祖先。小叶蝉亚科叶蝉的食性转变导致了其体内栖息微生物组成的重大变化。在气候变化时代,研究食性对微生物群落的影响以及随后对生物进化和适应的影响具有重要意义。