Suppr超能文献

通过纳米结构一维介孔通道的定向离子传输:用于高效电容去离子化的二维聚合物界面工程

Directional Ion Transport Through Nanoarchitected 1D Mesochannels: 2D Polymer Interfacial Engineering for High-Efficiency Capacitive Deionization.

作者信息

Tang Chen, Chen Hongli, Li Qian, Li Changle, Li Ying, Alowasheeir Azhar, El-Bahy Zeinhom M, Wang Guoxiu, Zhang Chongyin, Yamauchi Yusuke, Xu Xingtao

机构信息

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Centre for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.

出版信息

Adv Sci (Weinh). 2025 Sep;12(34):e04527. doi: 10.1002/advs.202504527. Epub 2025 Jun 26.

Abstract

The development of high-performance capacitive deionization (CDI) electrodes demands innovative materials that integrate rapid ion transport, high salt adsorption capacity (SAC), and oxidative stability. This challenge is addressed through a surface nanoarchitectonics strategy, constructing 2D mesochannel polypyrrole/reduced graphene oxide heterostructures (mPPy/rGO) with ordered 1D mesochannels (~8 nm) parallel to the graphene surface. By confining the self-assembly of cylindrical polymer brushes on freestanding rGO substrates, directional ion highways are simultaneously engineered that significantly reduce transport tortuosity. In addition, corrosion-resistant polymer interfaces block oxygen penetration, and strong interfacial interactions between PPy and rGO ensure efficient electron transfer. The mPPy/rGO-based CDI cell achieves breakthrough performance: ultrahigh SAC of 84.1 mg g (4.5× activated carbon, the salt concentration: 2 g L), and 96.8% capacity retention over 100 cycles in air-equilibrated saline solution (the salt concentration: 500 mg L). This interfacial confinement methodology establishes a universal paradigm for designing polymer-based desalination materials with atomically precise transport pathways.

摘要

高性能电容去离子化(CDI)电极的发展需要创新材料,这些材料要集成快速离子传输、高盐吸附容量(SAC)和氧化稳定性。通过表面纳米结构策略应对这一挑战,构建与石墨烯表面平行的具有有序一维中孔(约8纳米)的二维中孔聚吡咯/还原氧化石墨烯异质结构(mPPy/rGO)。通过将圆柱形聚合物刷自组装限制在独立的rGO基底上,同时设计出定向离子通道,显著降低传输曲折度。此外,耐腐蚀聚合物界面可阻止氧气渗透,PPy与rGO之间的强界面相互作用确保了高效电子转移。基于mPPy/rGO的CDI电池实现了突破性性能:在盐浓度为2克/升的情况下,超高SAC为84.1毫克/克(是活性炭的4.5倍),在空气平衡的盐溶液(盐浓度:500毫克/升)中经过100次循环后容量保持率为96.8%。这种界面限制方法为设计具有原子精确传输路径的聚合物基脱盐材料建立了一个通用范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da98/12442647/ff09d4779bcd/ADVS-12-e04527-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验