Suppr超能文献

用于MRI图像中眼眶结构自动分割的深度学习模型

Deep Learning Model for Automated Segmentation of Orbital Structures in MRI Images.

作者信息

Bakhshaliyeva Esmira, Reiner Lara Noelle, Chelbi Moudather, Nawabi Jawed, Tietze Anna, Scheel Michael, Wattjes Mike, Dell'Orco Andrea, Meddeb Aymen

机构信息

Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany.

Department of Neuroradiology, Charité-Universitätsmedizin Berlin/Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.

出版信息

Clin Neuroradiol. 2025 Jun 26. doi: 10.1007/s00062-025-01535-2.

Abstract

BACKGROUND

Magnetic resonance imaging (MRI) is a crucial tool for visualizing orbital structures and detecting eye pathologies. However, manual segmentation of orbital anatomy is challenging due to the complexity and variability of the structures. Recent advancements in deep learning (DL), particularly convolutional neural networks (CNNs), offer promising solutions for automated segmentation in medical imaging. This study aimed to train and evaluate a U-Net-based model for the automated segmentation of key orbital structures.

METHODS

This retrospective study included 117 patients with various orbital pathologies who underwent orbital MRI. Manual segmentation was performed on four anatomical structures: the ocular bulb, ocular tumors, retinal detachment, and the optic nerve. Following the UNet autoconfiguration by nnUNet, we conducted a five-fold cross-validation and evaluated the model's performances using Dice Similarity Coefficient (DSC) and Relative Absolute Volume Difference (RAVD) as metrics.

RESULTS

nnU-Net achieved high segmentation performance for the ocular bulb (mean DSC: 0.931) and the optic nerve (mean DSC: 0.820). Segmentation of ocular tumors (mean DSC: 0.788) and retinal detachment (mean DSC: 0.550) showed greater variability, with performance declining in more challenging cases. Despite these challenges, the model achieved high detection rates, with ROC AUCs of 0.90 for ocular tumors and 0.78 for retinal detachment.

CONCLUSIONS

This study demonstrates nnU-Net's capability for accurate segmentation of orbital structures, particularly the ocular bulb and optic nerve. However, challenges remain in the segmentation of tumors and retinal detachment due to variability and artifacts. Future improvements in deep learning models and broader, more diverse datasets may enhance segmentation performance, ultimately aiding in the diagnosis and treatment of orbital pathologies.

摘要

背景

磁共振成像(MRI)是可视化眼眶结构和检测眼部病变的重要工具。然而,由于眼眶结构的复杂性和变异性,手动分割眼眶解剖结构具有挑战性。深度学习(DL)的最新进展,特别是卷积神经网络(CNN),为医学成像中的自动分割提供了有前景的解决方案。本研究旨在训练和评估基于U-Net的模型用于关键眼眶结构的自动分割。

方法

这项回顾性研究纳入了117例患有各种眼眶病变并接受眼眶MRI检查的患者。对四个解剖结构进行了手动分割:眼球、眼部肿瘤、视网膜脱离和视神经。在nnUNet对U-Net进行自动配置后,我们进行了五折交叉验证,并使用骰子相似系数(DSC)和相对绝对体积差异(RAVD)作为指标评估模型的性能。

结果

nnU-Net在眼球(平均DSC:0.931)和视神经(平均DSC:0.820)的分割上取得了较高的性能。眼部肿瘤(平均DSC:0.788)和视网膜脱离(平均DSC:0.550)的分割表现出更大的变异性,在更具挑战性的病例中性能下降。尽管存在这些挑战,该模型仍实现了较高的检测率,眼部肿瘤的ROC曲线下面积(ROC AUC)为0.90,视网膜脱离为0.78。

结论

本研究证明了nnU-Net对眼眶结构,特别是眼球和视神经进行准确分割的能力。然而,由于变异性和伪影,肿瘤和视网膜脱离的分割仍存在挑战。深度学习模型的未来改进以及更广泛、更多样化的数据集可能会提高分割性能,最终有助于眼眶病变的诊断和治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验