Huck F O, Fales C L, Halyo N, Samms R W, Stacy K
J Opt Soc Am A. 1985 Oct;2(10):1644-66. doi: 10.1364/josaa.2.001644.
In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scenes indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.
在本文中,我们制定并使用信息和保真度标准来评估图像采集与处理,将光学设计与成像及边缘检测算法相结合。图像采集系统的光学设计围绕采样通带、空间响应和信噪比(SNR)之间的关系展开。我们对信息、保真度和最优(维纳)恢复的公式考虑了图像采集中常见的采样不足(即混叠)以及传统公式所考虑的模糊和噪声。针对普通光学设计约束和随机场景的性能分析与模拟表明:(1)不同的成像算法偏好不同的光学设计;(2)信息优化设计可使最优图像恢复的稳健性最大化,并导致边缘检测可靠(如果信噪比足够高)的最高空间频率通道;(3)将信息优化设计与3×3横向抑制图像平面处理算法相结合,会产生一种空间响应形状,近似于人类视觉(马尔模型)的最优边缘检测响应,从而减少机器视觉所需的数据预处理和传输。