Baid Priya, Sengupta Jayati
Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
FEBS J. 2025 Jun 26. doi: 10.1111/febs.70161.
The gene-encoding translation elongation factor G (EF-G) has undergone gene duplication across various bacterial species including Mycobacteria, and in mammalian mitochondria, leading to the emergence of the paralogue elongation factor G2 (EF-G2). Our study reveals that mycobacterial EF-G2, unlike EF-G1, neither participates in ribosome-recycling nor significantly contributes to overall translation, suggesting that it plays an alternative role in Mycobacteria. Remarkably, our investigation found a significant overexpression of mycobacterial EF-G2 during the stationary growth phase. Moreover, EF-G2 lacks ribosome-dependent GTPase activity, an observation consistent with previous reports. Cryo-EM analysis of the M. smegmatis 70S ribosome purified from the nutrient-starved (stationary) phase and complexed with EF-G2 unveiled the structural basis for its inability to hydrolyse GTP in a ribosome-dependent manner. Furthermore, we report an unprecedented binding mode of two EF-G2 copies on the 50S ribosomal subunit that impedes subunit association, thereby preventing the formation of active 70S ribosomes. Thus, instead of performing canonical functions, mycobacterial EF-G2 acts as a translation repressor during nutrient starvation. Altogether, our findings shed light on the multifaceted mechanisms by which EF-G2 modulates protein synthesis under nutrient-limited conditions, providing insights into adaptive strategies employed by Mycobacteria to survive in hostile environments.
编码翻译延伸因子G(EF-G)的基因在包括分枝杆菌在内的各种细菌物种以及哺乳动物线粒体中经历了基因复制,导致旁系同源延伸因子G2(EF-G2)的出现。我们的研究表明,分枝杆菌EF-G2与EF-G1不同,既不参与核糖体循环,对整体翻译也没有显著贡献,这表明它在分枝杆菌中发挥着替代作用。值得注意的是,我们的研究发现分枝杆菌EF-G2在稳定生长期有显著的过表达。此外,EF-G2缺乏核糖体依赖性GTP酶活性,这一观察结果与之前的报道一致。对从营养饥饿(稳定)期纯化并与EF-G2复合的耻垢分枝杆菌70S核糖体进行冷冻电镜分析,揭示了其无法以核糖体依赖性方式水解GTP的结构基础。此外,我们报道了两个EF-G2拷贝在50S核糖体亚基上一种前所未有的结合模式,这种模式阻碍了亚基结合,从而阻止了活性70S核糖体的形成。因此,分枝杆菌EF-G2在营养饥饿期间并非执行经典功能,而是充当翻译抑制因子。总之,我们的研究结果揭示了EF-G2在营养限制条件下调节蛋白质合成的多方面机制,为分枝杆菌在恶劣环境中生存所采用的适应性策略提供了见解。