Borghans Bart, Kortzak Daniel, Longo Piersilvio, Kolen Bettina, Machtens Jan-Philipp, Fahlke Christoph
Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.
PLoS Comput Biol. 2025 Jun 26;21(6):e1013214. doi: 10.1371/journal.pcbi.1013214. eCollection 2025 Jun.
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate and remove luminal Cl- via an additional anion channel mode. Both of these transport functions are stimulated by luminal acidification, luminal-positive membrane potential, and luminal Cl-. We studied VGLUT1 transporter/channel activation using a combination of heterologous expression, cellular electrophysiology, fast solution exchange, and mathematical modeling. Cl- channel gating can be described with a kinetic scheme that includes two protonation sites and distinct opening, closing, and Cl--binding rates for each protonation state. Cl- binding promotes channel opening by modifying the pKa values of the protonation sites and rates of pore opening and closure. VGLUT1 transports glutamate and aspartate at distinct stoichiometries: H+-glutamate exchange at 1:1 stoichiometry and aspartate uniport. Neurotransmitter transport with variable stoichiometry can be described with an alternating access model that assumes that transporters without substrate translocate in the doubly protonated state to the inward-facing conformation and return with the bound amino acid substrate as either singly or doubly protonated. Glutamate, but not aspartate, promotes the release of one proton from inward-facing VGLUT1, resulting in preferential H+-coupled glutamate exchange. Cl- stimulates glutamate transport by making the glutamate-binding site accessible to cytoplasmic glutamate and by facilitating transitions to the inward-facing conformation after outward substrate release. We conclude that allosteric modification of transporter protonation by Cl- is crucial for both VGLUT1 transport functions.
囊泡谷氨酸转运体(VGLUTs)将谷氨酸填充到突触囊泡中,并通过额外的阴离子通道模式去除囊腔内的Cl-。这两种转运功能均受到囊腔酸化、囊腔正膜电位和囊腔Cl-的刺激。我们结合异源表达、细胞电生理学、快速溶液交换和数学建模研究了VGLUT1转运体/通道的激活。Cl-通道门控可用一个动力学方案来描述,该方案包括两个质子化位点,且每个质子化状态具有不同的开放、关闭和Cl-结合速率。Cl-结合通过改变质子化位点的pKa值以及孔道开放和关闭的速率来促进通道开放。VGLUT1以不同的化学计量比转运谷氨酸和天冬氨酸:以1:1化学计量比进行H+-谷氨酸交换和天冬氨酸单向转运。具有可变化学计量比的神经递质转运可用交替访问模型来描述,该模型假设没有底物的转运体以双质子化状态转运到向内的构象,并与结合的氨基酸底物一起以单质子化或双质子化状态返回。谷氨酸而非天冬氨酸能促进向内的VGLUT1释放一个质子,从而导致优先的H+偶联谷氨酸交换。Cl-通过使胞质谷氨酸可接近谷氨酸结合位点并在向外底物释放后促进向内构象的转变来刺激谷氨酸转运。我们得出结论,Cl-对转运体质子化的变构修饰对于VGLUT1的两种转运功能都至关重要。