Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA.
Science. 2020 May 22;368(6493):893-897. doi: 10.1126/science.aba9202.
Synaptic vesicles accumulate neurotransmitters, enabling the quantal release by exocytosis that underlies synaptic transmission. Specific neurotransmitter transporters are responsible for this activity and therefore are essential for brain function. The vesicular glutamate transporters (VGLUTs) concentrate the principal excitatory neurotransmitter glutamate into synaptic vesicles, driven by membrane potential. However, the mechanism by which they do so remains poorly understood owing to a lack of structural information. We report the cryo-electron microscopy structure of rat VGLUT2 at 3.8-angstrom resolution and propose structure-based mechanisms for substrate recognition and allosteric activation by low pH and chloride. A potential permeation pathway for chloride intersects with the glutamate binding site. These results demonstrate how the activity of VGLUTs can be coordinated with large shifts in proton and chloride concentrations during the synaptic vesicle cycle to ensure normal synaptic transmission.
突触囊泡积累神经递质,通过胞吐作用实现量子释放,这是突触传递的基础。特定的神经递质转运体负责这种活动,因此对大脑功能至关重要。囊泡谷氨酸转运体(VGLUTs)在膜电位的驱动下,将主要的兴奋性神经递质谷氨酸浓缩到突触囊泡中。然而,由于缺乏结构信息,它们的作用机制仍不清楚。我们报告了 3.8 埃分辨率的大鼠 VGLUT2 的冷冻电子显微镜结构,并提出了基于结构的机制,用于解释低 pH 值和氯离子对底物识别和变构激活的作用。氯离子的潜在渗透途径与谷氨酸结合位点相交。这些结果表明,VGLUTs 的活性如何与突触囊泡循环中质子和氯离子浓度的大幅变化相协调,以确保正常的突触传递。