Ges A, Viltres H, Castro A, Shiva Samhitha S, Quezada C, Sánchez-Sanhueza G, Bollo S, Ladame S, Morales J O
Department of Materials Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, 4070409, Chile; Higher Institute of Tecnologies and Applied Sciences, Universidad de la Habana, 1100, La Habana, Cuba; Institute of Natural Sciences, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Campus El Boldal, Concepción, 4100000, Chile.
School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4L8, Canada.
Talanta. 2026 Jan 1;296:128451. doi: 10.1016/j.talanta.2025.128451. Epub 2025 Jun 25.
According to statistical data from the World Health Organization, in 2040, there will be an estimated 28.4 million new cancer cases. Gastric cancer (GC) is one of the most significantly deadly neoplasms: one out of every thirteen deaths worldwide. This situation happens due to two main factors: the clinical manifestations of the disease and the low efficacy of current detection techniques. The biosensors have gained attention as promising tools for early diagnosis, considering their easy integration into point-of-care technology. These devices enable the development of minimally invasive, highly sensitive, cost-effective, and user-friendly tests suitable for accurately screening large population groups. This review will explore applying nanomaterial-based electrochemical biosensor technology for screening, early detection, and prognostic assessment of stomach cancer. It comprehensively explains biosensor development engineering factors such as shelf life, scalability, reproducibility, and assay time. It compares Electroanalytical Techniques and biorecognition probes for successful biosensor manufacturing, instilling confidence in the review's findings. The role of GC biomarkers and their diagnostic value and biological functions will be covered, highlighting emerging blood biomarkers. It emphasises electrochemical detection in clinical samples and the role of nanomaterials in these outcomes. Finally, translating nanobiosensors into mHealth applications by integration with Internet of Medical Things frameworks is critically reviewed, filling a critical knowledge gap. Therefore, the proposal aims to guide researchers in this interdisciplinary field of Biosensor PoC technologies development for the critical selection of biosensor components from a manufacturing and materials engineering point of view that guarantees a suitable integration and translation to the healthcare system.
根据世界卫生组织的统计数据,到2040年,预计将有2840万新增癌症病例。胃癌(GC)是最致命的肿瘤之一:全球每13例死亡中就有1例是胃癌导致的。这种情况主要由两个因素造成:疾病的临床表现和当前检测技术的低效性。生物传感器作为有望用于早期诊断的工具而受到关注,因为它们易于集成到即时检测技术中。这些设备能够开发出微创、高灵敏度、经济高效且用户友好的检测方法,适用于准确筛查大量人群。本综述将探讨基于纳米材料的电化学生物传感器技术在胃癌筛查、早期检测和预后评估中的应用。它全面解释了生物传感器开发的工程因素,如保质期、可扩展性、可重复性和检测时间。它比较了用于成功制造生物传感器的电分析技术和生物识别探针,增强了对综述结果的信心。还将涵盖GC生物标志物的作用及其诊断价值和生物学功能,重点介绍新兴的血液生物标志物。强调临床样本中的电化学检测以及纳米材料在这些结果中的作用。最后,对通过与医疗物联网框架集成将纳米生物传感器转化为移动健康应用进行了批判性综述,填补了关键的知识空白。因此,该提议旨在从制造和材料工程的角度指导生物传感器即时检测技术跨学科领域的研究人员,以便从关键角度选择生物传感器组件,确保其适当地集成并转化到医疗保健系统中。