Li Juyan, Zhou Tianyu, Chen Junyu, Lu Wei, Yang Qi, Wang Jianpeng, Li Yanbing, Cheng Jie
Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Shandong Key Laboratory of Marine Seed Industry (preparatory), Ocean University of China, Qingdao, 266003, China.
Mar Environ Res. 2025 Sep;210:107315. doi: 10.1016/j.marenvres.2025.107315. Epub 2025 Jun 18.
Salinity plays significant roles in fish growth, feeding, and energy allocation. However, the effect of salinity on fish metabolism and growth through coordinated regulation of the neuroendocrine network is still unclear. This study examined the central melanocortin system (CMS) of two economically important fish species in China, the Chinese seabass (Lateolabrax maculatus) and humpback grouper (Cromileptes altivelis), representing different salinity-adaptation ability and growth patterns. Accordingly, 34 and 31 CMS genes were identified in L. maculatus and C. altivelis genomes, respectively. Functional domain and phylogeny revealed their conservation among teleosts, and both orexigenic (npy2r-2) and anorexigenic (pomcb) genes evolve faster in L. maculatus and C. altivelis. The CMS genes represented species-specific response in brains of L. maculatus and C. altivelis under salinity change, with opposite regulatory patterns between orexigenic (npyrs) and anorexigenic (pomca/b, carts) genes. Through weighted gene co-expression network analysis, the CMS co-expressing genes enriched functions of stress response, feeding behavior, mitochondrial and oxidative activity, metabolism and growth in L. maculatus and C. altivelis, with L. maculatus CMS interacting more actively and diversely than that of C. altivelis. With elevated evolutionary rates, strong and diverse regulated expression of pomc genes under salinity changes, further in vitro knockdown of pomca/b in brains confirmed their interactions with genes of stress, metabolism and growth in L. maculatus (gh, prl, tshb) and C. altivelis (crhb, igfbp2a, fundc1) through qRT-PCR (P < 0.05). Therefore, these results revealed species-specific regulatory and evolutionary patterns of the neuroendocrine CMS between L. maculatus and C. altivelis, which provided valuable insights into the sustainable and profitable aquaculture of fish species in dynamic aquatic environments.
盐度在鱼类生长、摄食和能量分配中起着重要作用。然而,盐度通过神经内分泌网络的协同调节对鱼类新陈代谢和生长的影响仍不清楚。本研究检测了中国两种具有重要经济价值的鱼类——花鲈(Lateolabrax maculatus)和驼背鲈(Cromileptes altivelis)的中枢黑皮质素系统(CMS),这两种鱼代表了不同的盐度适应能力和生长模式。相应地,在花鲈和驼背鲈基因组中分别鉴定出34个和31个CMS基因。功能域和系统发育分析表明它们在硬骨鱼中具有保守性,并且促食欲基因(npy2r - 2)和抑食欲基因(pomcb)在花鲈和驼背鲈中进化得更快。CMS基因在花鲈和驼背鲈大脑中对盐度变化表现出物种特异性反应,促食欲基因(npyrs)和抑食欲基因(pomca/b、carts)之间存在相反的调节模式。通过加权基因共表达网络分析,CMS共表达基因在花鲈和驼背鲈中富集了应激反应、摄食行为、线粒体和氧化活性、新陈代谢和生长等功能,花鲈的CMS比驼背鲈更活跃、更多样地相互作用。随着进化速率的提高,盐度变化下pomc基因有强烈且多样的调控表达,进一步在体外敲低大脑中的pomca/b,通过qRT-PCR证实它们与花鲈(gh、prl、tshb)和驼背鲈(crhb、igfbp2a、fundc1)的应激、新陈代谢和生长基因相互作用(P < 0.05)。因此,这些结果揭示了花鲈和驼背鲈之间神经内分泌CMS的物种特异性调控和进化模式,为动态水生环境中鱼类的可持续和盈利性水产养殖提供了有价值的见解。