Suppr超能文献

基于无损光谱技术的肉类及肉制品鉴别——综述

Non-destructive spectroscopy-based technologies for meat and meat product discrimination - A review.

作者信息

León-Ecay Sara, Insausti Kizkitza, López-Maestresalas Ainara, Prieto Nuria

机构信息

Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain; Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta T4L 1W1, Canada.

Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain.

出版信息

Meat Sci. 2025 Oct;228:109893. doi: 10.1016/j.meatsci.2025.109893. Epub 2025 Jun 19.

Abstract

Consumers' confidence in products of animal origin is highly subjected to the quality guarantees offered by the manufacturing and retail industries. Traditionally, meat quality evaluation has been conducted through destructive, time-consuming and chemical-dependent protocols. Smart methodologies based on the non-destructiveness and/or non-contact with the samples, such as spectroscopy-based technologies, arise as an alternative promising tool. This comprehensive overview includes literature published in the last decade applying spectroscopy-based techniques in the Visible (Vis) and near-infrared (NIR) regions of the spectrum (Vis-NIR), either individually or combined with imaging (hyperspectral imaging, HSI), to classify meat and meat products based on ante- or postmortem factors. First, a brief introduction to the fundamentals of Vis-NIRS and HSI is included. Secondly, the main applications of Vis-NIRS and HSI technologies for meat qualitative purposes only are discussed. The Vis-NIRS and HSI have been successfully used in lab scale studies (> 90 % overall accuracy) to discriminate meat and meat products according to antemortem (feeding system, species, origin and breed) and postmortem (freshness, meat quality, label claims) factors. Recently, spectral data collected with handheld Vis-NIR equipment have become more frequent, although the use of portable HSI has not been widely explored. From the studies reviewed, the main concern regarding spectral data is to shorten modelling handling times, including strategies to both extract optimal wavelengths from NIR and compress spectral data from HSI. Despite the efforts made to overcome instrumentation and data processing challenges, a gap remains to be covered up to a real-time implementation in industrial line quality control.

摘要

消费者对动物源性产品的信心高度依赖于制造和零售行业提供的质量保证。传统上,肉类质量评估是通过具有破坏性、耗时且依赖化学方法的协议来进行的。基于对样品非破坏性和/或非接触性的智能方法,如基于光谱的技术,成为一种有前景的替代工具。这篇综述涵盖了过去十年发表的文献,这些文献应用光谱技术在可见光(Vis)和近红外(NIR)光谱区域(Vis-NIR),单独或与成像技术(高光谱成像,HSI)结合,根据宰前或宰后因素对肉类和肉制品进行分类。首先,介绍了Vis-NIRS和HSI的基本原理。其次,讨论了Vis-NIRS和HSI技术仅用于肉类定性目的的主要应用。Vis-NIRS和HSI已成功应用于实验室规模的研究(总体准确率>90%),以根据宰前(饲养系统、物种、产地和品种)和宰后(新鲜度、肉质、标签声明)因素区分肉类和肉制品。最近,使用手持式Vis-NIR设备收集光谱数据的情况越来越频繁,尽管便携式HSI的应用尚未得到广泛探索。从所综述的研究来看,关于光谱数据的主要关注点是缩短建模处理时间,包括从近红外光谱中提取最佳波长以及压缩高光谱成像光谱数据的策略。尽管已努力克服仪器和数据处理方面的挑战,但在工业生产线质量控制的实时实施方面仍存在差距有待填补。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验