Suppr超能文献

基于稀疏混合整数规划和非凸注量图优化的调强放射治疗中的射束方向优化

Beam orientation optimization in IMRT using sparse mixed integer programming and non-convex fluence map optimization.

作者信息

Lei Yang, Zhang Jiahan, Yang Kaida, Wei Shouyi, Liu Ruirui, Fu Yabo, Lei Yu, Lin Haibo, Simone Charles B, Rosenzweig Kenneth, Liu Tian

机构信息

Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.

New York Proton Center, New York, NY, United States of America.

出版信息

Phys Med Biol. 2025 Jul 4;70(13). doi: 10.1088/1361-6560/ade8ce.

Abstract

Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is a complex, non-convex problem traditionally addressed with heuristic methods.This work demonstrates the potential improvement of the proposed BOO, providing a mathematically grounded benchmark that can guide and validate heuristic BOO methods, while also offering a computationally efficient workflow suitable for clinical application. A novel framework integrating second-order cone programming (SOCP) relaxation, sparse mixed integer programming (SMIP), and deep inverse optimization is proposed. Nonconvex dose-volume constraints were managed via SOCP relaxation, ensuring convexity while maintaining sparsity. BOO was formulated as an SMIP problem with binary beam selection, solved using an augmented Lagrange method. To accelerate optimization, a neural network approximated optimal solution, improving computational efficiency eightfold. A retrospective analysis of 12 locally advanced non-small cell lung cancer (NSCLC) patients (60 Gy prescription) compared automated BOO-selected beam angles with expert selections, evaluating dosimetric metrics such as planning target volume (PTV) maximum dose, D98%, lung V20, and mean heart and esophagus dose.In 12 retrospective study, the automated BOO demonstrated superior dose conformity and sparing of critical structures. Specifically, the BOO plans achieved comparable PTV coverage (maximum: 61.7 ± 1.4 Gy vs. 62.1 ± 1.5 Gy, D98%: 59.5 ± 0.7 Gy vs. 59.5 ± 0.6 Gy, D2%: 61.2 ± 1.3 Gy vs. 61.4 ± 1.4 Gy with-values >0.5) but demonstrated improved sparing for lungs (V20: 9.8 ± 2.2% vs. 11.5 ± 2.3%,-value: 0.01), heart (mean: 3.3 ± 0.6 Gy vs. 4.3 ± 0.5 Gy,-value: 0.04), esophagus (mean: 0.5 ± 1.3 Gy vs. 1.8 ± 1.5 Gy,-value: 0.02), and spinal cord (max: 7.2 ± 3.4 Gy vs. 9.0 ± 3.2 Gy,-value < 0.01) compared to human-selected plans.This approach highlighted the potential of BOO to enhance treatment efficacy by optimizing beam angles more effectively than manual selection. This framework establishes a benchmark for BOO in IMRT, enhancing heuristic methods through a hybrid framework that combines mathematical optimization with targeted heuristics to improve solution quality and computational efficiency. The integration of SMIP and deep inverse optimization significantly improves computational efficiency and plan quality.

摘要

强度调制放射治疗(IMRT)中的射束方向优化(BOO)是一个复杂的非凸问题,传统上采用启发式方法解决。这项工作展示了所提出的BOO的潜在改进,提供了一个有数学依据的基准,可用于指导和验证启发式BOO方法,同时还提供了一种适用于临床应用的计算高效的工作流程。提出了一种集成二阶锥规划(SOCP)松弛、稀疏混合整数规划(SMIP)和深度逆优化的新颖框架。通过SOCP松弛处理非凸剂量体积约束,确保凸性同时保持稀疏性。BOO被表述为一个具有二元射束选择的SMIP问题,使用增广拉格朗日方法求解。为了加速优化,神经网络近似最优解,将计算效率提高了八倍。对12例局部晚期非小细胞肺癌(NSCLC)患者(处方剂量60 Gy)进行回顾性分析,将自动BOO选择的射束角度与专家选择的角度进行比较,评估剂量学指标,如计划靶体积(PTV)最大剂量、D98%、肺V20以及心脏和食管平均剂量。在12例回顾性研究中,自动BOO显示出更好的剂量适形性和对关键结构的保护。具体而言,BOO计划实现了相当的PTV覆盖(最大值:61.7±1.4 Gy对62.1±1.5 Gy,D98%:59.5±0.7 Gy对59.5±0.6 Gy,D2%:61.2±1.3 Gy对61.4±1.4 Gy,相关值>0.5),但对肺(V20:9.8±2.2%对11.5±2.3%,相关值:0.01)、心脏(平均值:3.3±0.6 Gy对4.3±0.5 Gy,相关值:0.04)、食管(平均值:0.5±1.3 Gy对1.8±1.5 Gy,相关值:0.02)和脊髓(最大值:7.2±3.4 Gy对9.0±3.2 Gy,相关值<0.01)的保护优于人工选择的计划。这种方法突出了BOO通过比人工选择更有效地优化射束角度来提高治疗效果的潜力。该框架为IMRT中的BOO建立了一个基准,通过将数学优化与有针对性的启发式方法相结合的混合框架来增强启发式方法,以提高解决方案质量和计算效率。SMIP和深度逆优化的集成显著提高了计算效率和计划质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验