Rademacker Stina, Carneiro Simone, Molbay Müge, Catapano Federica, Forné Ignasi, Imhof Axel, Wibel Richard, Heidecke Christoph, Hölig Peter, Merkel Olivia
Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.
Proteomics Core Facility, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhadernerstr. 9, 82152 Planegg-Martinsried, Germany.
Eur J Pharm Sci. 2025 Jun 24:107182. doi: 10.1016/j.ejps.2025.107182.
Lipid nanoparticles (LNPs) are of significant interest as delivery systems for various RNA therapeutics, not least due to their outstanding success in applications including the COVID-19 vaccines and the siRNA therapeutic Onpattro®. As LNPs consist of different lipids, the lipid composition determines key properties of these particles. This study examines how lipid composition, especially helper and PEG-lipids, and RNA cargo (siRNA and mRNA) affect LNP performance in pulmonary delivery. By comparting two different helper and two different PEG-lipids, we assessed the impact on fusogenicity and endosomal escape, in vitro transfection efficiency, and subsequently protein corona formation. Their in vitro performance was assessed in the air-liquid interface (ALI) cell culture model, a sophisticated in vitro model of the lungs. Our results demonstrated that transfection efficiency and stability differ between the helper lipids DOPE and DSPC, depending on the RNA cargo. These differences can be attributed to the structural differences of the lipids and the different properties of the RNA molecules. Our investigations further demonstrated successful mucus penetration of all LNPs and 24-42% gene silencing in vitro. We also explored mucus proteins/LNP interactions in human lung mucus, finding distinct protein corona formation for DSPC- and DOPE-containing LNPs. This comprehensive analysis highlights the critical role of helper lipids in combination with RNA cargo in determining LNP properties, efficiency, and in vitro performance, providing valuable insights for optimizing RNA delivery systems.
脂质纳米颗粒(LNPs)作为各种RNA疗法的递送系统备受关注,尤其是因为它们在包括COVID-19疫苗和siRNA疗法Onpattro®等应用中取得了显著成功。由于LNPs由不同的脂质组成,脂质组成决定了这些颗粒的关键特性。本研究考察了脂质组成,特别是辅助脂质和聚乙二醇脂质,以及RNA货物(siRNA和mRNA)如何影响LNPs在肺部递送中的性能。通过比较两种不同的辅助脂质和两种不同的聚乙二醇脂质,我们评估了它们对融合性和内体逃逸、体外转染效率以及随后的蛋白冠形成的影响。在气液界面(ALI)细胞培养模型(一种复杂的肺部体外模型)中评估了它们的体外性能。我们的结果表明,辅助脂质DOPE和DSPC之间的转染效率和稳定性存在差异,这取决于RNA货物。这些差异可归因于脂质的结构差异和RNA分子的不同特性。我们的研究进一步证明了所有LNPs均能成功穿透黏液,并在体外实现了24%-42%的基因沉默。我们还探索了人肺黏液中黏液蛋白/LNP的相互作用,发现含DSPC和DOPE的LNPs形成了不同的蛋白冠。这一全面分析突出了辅助脂质与RNA货物结合在决定LNP特性、效率和体外性能方面的关键作用,为优化RNA递送系统提供了有价值的见解。
ACS Biomater Sci Eng. 2025-7-11
J Biomed Mater Res A. 2024-9
J Control Release. 2025-8-10
Methods Mol Biol. 2025
Mol Ther. 2025-3-5