Gorecki Dariusz C, Patel Abdulsamie M, Pomeroy Joanna, Verkhratsky Alexei
School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael Bld, White Swan Road, Portsmouth, PO1 2DT, UK.
SLC6A1 Connect, Frisco, TX, 75034, USA.
Neurochem Res. 2025 Jun 26;50(4):213. doi: 10.1007/s11064-025-04464-1.
In addition to their muscle functions, dystrophins -the protein products of the DMD gene - also play a role in the central nervous system (CNS). In Duchenne muscular dystrophy (DMD), the progressive muscle degeneration, is associated with cognitive and behavioural impairments, which are severe in one-third of patients and substantially increase the overall clinical burden. The mechanisms of these neuropsychiatric abnormalities are complex and only partially understood. Specific dystrophins are functionally important in various brain cells and at their specialisations, with further diversity occurring throughout brain development and maturation across brain regions. Mutations affecting the full-length dystrophins (Dp427) cause the disease, while the additional loss of shorter isoforms (Dp140 and Dp71) can exacerbate the clinical presentation. Truncated dystrophins are strongly expressed in the healthy brain and therefore were investigated extensively, but most of DMD patients presenting with neuropsychiatric abnormalities do not have mutations affecting these isoforms. When the full-length dystrophins are considered, the abnormalities unquestionably involve not only neurones but also astrocytes, where absence of dystrophins reduces proliferation, disrupts neurotransmitter regulation, synaptic stability, and neurovascular integrity. Deficiency of astrocytic dystrophins impairs glutamate clearance, leading to excitotoxicity and neuronal hyperexcitability linked to multiple neuropsychiatric manifestations. This review evaluates evidence on dystrophin's role in astrocytes, its contribution to synaptic malfunction, and parallels with other neurodevelopmental disorders. Understanding that the deficient astrocyte homeostasis contributes to DMD can lead to the exploration of novel therapeutic strategies involving astrocyte-mediated neurotransmitter regulation to mitigate neuropsychiatric deficits.
除了其肌肉功能外,肌营养不良蛋白(杜氏肌营养不良症基因的蛋白质产物)在中枢神经系统(CNS)中也发挥作用。在杜氏肌营养不良症(DMD)中,进行性肌肉退化与认知和行为障碍有关,三分之一的患者症状严重,大大增加了整体临床负担。这些神经精神异常的机制很复杂,目前仅部分为人所知。特定的肌营养不良蛋白在各种脑细胞及其特化过程中具有重要功能,并且在整个大脑发育和跨脑区成熟过程中会进一步产生多样性。影响全长肌营养不良蛋白(Dp427)的突变会导致该疾病,而较短亚型(Dp140和Dp71)的额外缺失会加剧临床表现。截短的肌营养不良蛋白在健康大脑中强烈表达,因此受到广泛研究,但大多数出现神经精神异常的DMD患者并没有影响这些亚型的突变。当考虑全长肌营养不良蛋白时,这些异常无疑不仅涉及神经元,还涉及星形胶质细胞,在星形胶质细胞中,肌营养不良蛋白的缺失会减少增殖、破坏神经递质调节、突触稳定性和神经血管完整性。星形胶质细胞肌营养不良蛋白的缺乏会损害谷氨酸清除,导致兴奋性毒性和与多种神经精神表现相关的神经元过度兴奋。本综述评估了关于肌营养不良蛋白在星形胶质细胞中的作用、其对突触功能障碍的贡献以及与其他神经发育障碍的相似性的证据。认识到星形胶质细胞内环境稳态的缺陷会导致DMD,这可能会促使人们探索涉及星形胶质细胞介导的神经递质调节以减轻神经精神缺陷的新治疗策略。