Suppr超能文献

在肌营养不良蛋白缺陷的mdx小鼠的整个生命周期中,海马齿状回中的星形胶质细胞增殖受到抑制。

Astrocyte proliferation in the hippocampal dentate gyrus is suppressed across the lifespan of dystrophin-deficient mdx mice.

作者信息

Stephenson Kimberley A, Peters Polly, Rae Mark G, O'Malley Dervla

机构信息

Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.

出版信息

Exp Physiol. 2025 Apr;110(4):585-598. doi: 10.1113/EP092150. Epub 2025 Jan 10.

Abstract

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing. To understand changes in cellular composition that might underpin these age-related developments, we have compared neurogenesis and the prevalence of immunofluorescently identified newly born and mature neurons, astrocytes and microglia in the dentate gyrus of mdx and wild-type mice at 2, 4, 8 and 16 months of age. The number of adult-born neurons was suppressed in the dentate gyrus subgranular zone of 2-month-old mdx mice. However, the numbers of granule cells and GABA receptor, alpha 1-expressing cells were similar in wild-type and mdx mice at all ages. Strikingly, the numbers of astrocytes, particularly in the dentate gyrus molecular layer, were suppressed in mdx mice at all time points. Thus, dystrophin loss was associated with reduced hippocampal neurogenesis in early life but did not impact the prevalence of mature neurons across the lifespan of mdx mice. In contrast, normal age-related dentate gyrus astrocyte proliferation was suppressed in dystrophic mice. Astrocytes are the most abundant cell type in the brain and are crucial in supporting neuronal function, such that loss of these cells is likely to contribute to hippocampal dysfunction reported in mdx mice.

摘要

结构蛋白肌营养不良蛋白的缺失会导致神经肌肉疾病杜氏肌营养不良症(DMD)。除了进行性骨骼肌功能障碍外,这种多系统疾病还可能导致认知缺陷和行为改变,这可能是中枢神经元和星形胶质细胞中肌营养不良蛋白缺失的后果。肌营养不良蛋白缺陷的mdx小鼠海马体(编码和巩固记忆的脑区)灰质体积减少,且随着年龄增长这种情况会加剧。为了了解可能支撑这些与年龄相关变化的细胞组成变化,我们比较了mdx小鼠和野生型小鼠在2、4、8和16月龄时齿状回中的神经发生情况,以及通过免疫荧光鉴定的新生和成熟神经元、星形胶质细胞和小胶质细胞的比例。2月龄mdx小鼠齿状回颗粒下区成年后生成的神经元数量受到抑制。然而,在所有年龄段,野生型小鼠和mdx小鼠的颗粒细胞数量以及表达GABA受体α1的细胞数量相似。引人注目的是,在所有时间点,mdx小鼠中的星形胶质细胞数量,尤其是在齿状回分子层中的数量,均受到抑制。因此,肌营养不良蛋白的缺失与生命早期海马体神经发生减少有关,但在mdx小鼠的整个生命周期中并未影响成熟神经元的比例。相比之下,营养不良小鼠中正常的与年龄相关的齿状回星形胶质细胞增殖受到抑制。星形胶质细胞是大脑中最丰富的细胞类型,对支持神经元功能至关重要,因此这些细胞的缺失可能导致mdx小鼠中报道的海马体功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc0/11963898/df1202735d12/EPH-110-585-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验