Zhou Taoyun, Li Shilin, Xie Dong, Liu Yi, Cheng Yun, Li Xinyu
School of Information, Hunan University of Humanities, Science and Technology, Loudi 417099, China.
Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China.
Micromachines (Basel). 2025 Jun 13;16(6):705. doi: 10.3390/mi16060705.
The rapid development of energy storage technologies has led to an increasing demand for high-performance electrode materials that can enhance both the energy density and the cycling stability of batteries. In this study, polypyrrole (PPy) nanorods with partial hollow features are utilized as a conductive and flexible framework for the in situ growth of VO nanospheres via a simple hydrothermal method, forming a well-defined core-shell PPy/VO nanocomposite. This hierarchical nanostructure combines the excellent electrical conductivity and mechanical flexibility of PPy with the high theoretical capacity of VO, creating a synergistic effect that significantly enhances the electrochemical performance. The well-integrated interface between PPy and VO reduces interfacial resistance, promotes efficient electron and ion transport, and improves the overall energy conversion efficiency. Electrochemical testing reveals that the PPy/VO nanocomposite delivers a high specific capacity of 413 mAh g at 100 mA g and retains 87.2% of its initial capacity after 1200 cycles, demonstrating exceptional rate capability and long-term cycling stability. This work provides a versatile strategy for designing high-performance cathode materials and highlights the promising potential of PPy/VO nanocomposites for next-generation high-energy-density aqueous zinc-ion batteries.
储能技术的快速发展导致对高性能电极材料的需求不断增加,这些材料能够提高电池的能量密度和循环稳定性。在本研究中,具有部分中空特征的聚吡咯(PPy)纳米棒被用作导电且灵活的框架,通过简单的水热法原位生长VO纳米球,形成明确的核壳结构PPy/VO纳米复合材料。这种分级纳米结构将PPy优异的导电性和机械柔韧性与VO的高理论容量相结合,产生协同效应,显著提高了电化学性能。PPy与VO之间良好整合的界面降低了界面电阻,促进了高效的电子和离子传输,并提高了整体能量转换效率。电化学测试表明,PPy/VO纳米复合材料在100 mA g下具有413 mAh g的高比容量,在1200次循环后保留了其初始容量的87.2%,展现出优异的倍率性能和长期循环稳定性。这项工作为设计高性能正极材料提供了一种通用策略,并突出了PPy/VO纳米复合材料在下一代高能量密度水系锌离子电池中的广阔前景。