Pandey Anil, Shrestha Santu, Kandel Rupesh, Gyawali Narayan, Acharya Subas, Nepal Pujan, Gaire Binod, Fualo Vince, Hahn Jae Ryang
Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.
Molecules. 2025 Jun 12;30(12):2561. doi: 10.3390/molecules30122561.
The development of high-performance photocatalysts is vital for combating water pollution and microbial contamination. In this study, visible-light-active Z-scheme heterojunction nanocomposites composed of CoO and NbO (CNNC) were synthesized via co-crystallization and subsequent high-pressure annealing to enhance photocatalytic and antimicrobial performance. Structural and optical analyses via XRD, FESEM, TEM, XPS, and PL confirmed the heterojunction formation between porous CoO nanoparticles (CONP) and columnar orthorhombic NbO nanoparticles (NONP). The CNNC exhibited significantly improved photocatalytic activity, achieving degradation efficiencies of 95.1% for methylene blue, 72.6% for tetracycline, and 90.0% for Congo red within 150 min. Kinetic studies showed that CNNC's rate constants were 367% and 466% of those of CONP and NONP, respectively. Moreover, CNNC demonstrated a strong antibacterial effect on and with ZOI values of 9.3 mm and 6.8 mm, respectively. Mechanistic analysis revealed that the Z-scheme charge-transfer pathway improved charge separation and reduced electron-hole recombination, contributing to the promoted photocatalytic efficiency. The nanocomposite also showed robust stability and recyclability over five times. These results highlight the promise of CNNC as a bifunctional, visible-light-driven photocatalyst for pollutant decomposition and microbial control.
高性能光催化剂的开发对于对抗水污染和微生物污染至关重要。在本研究中,通过共结晶和随后的高压退火合成了由CoO和NbO组成的可见光活性Z型异质结纳米复合材料(CNNC),以提高光催化和抗菌性能。通过XRD、FESEM、TEM、XPS和PL进行的结构和光学分析证实了多孔CoO纳米颗粒(CONP)和柱状正交晶系NbO纳米颗粒(NONP)之间形成了异质结。CNNC表现出显著提高的光催化活性,在150分钟内对亚甲基蓝的降解效率达到95.1%,对四环素的降解效率达到72.6%,对刚果红的降解效率达到90.0%。动力学研究表明,CNNC的速率常数分别是CONP和NONP的367%和466%。此外,CNNC对[具体细菌1]和[具体细菌2]表现出强烈的抗菌作用,抑菌圈直径(ZOI)值分别为9.3毫米和6.8毫米。机理分析表明,Z型电荷转移途径改善了电荷分离,减少了电子 - 空穴复合,有助于提高光催化效率。该纳米复合材料还表现出强大的稳定性和五次以上的可回收性。这些结果突出了CNNC作为一种用于污染物分解和微生物控制的双功能、可见光驱动光催化剂的潜力。