School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China.
Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, PR China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):30-41. doi: 10.1016/j.jcis.2024.08.145. Epub 2024 Aug 21.
The overuse of antibiotics has caused the emergence of drug-resistant bacteria and even superbugs, which makes it imperative to develop promising antibiotic-free alternatives. Herein, a multimodal antibacterial nanoplatform of two dimensional/two dimensional (2D/2D) mesoporous CoO/BiOCl nanocomposite is constructed, which possesses the effect of "kill three birds with one stone": (1) the use of mesoporous CoO can enlarge the surface area of the nanocomposite and promote the adsorption of bacteria; (2) CoO displays remarkable full-spectrum absorption and photo-induced self-heating effect, which can raise the temperature of CoO/BiOCl and help to kill bacteria; (3) the p-type CoO and n-type BiOCl form a p-n heterojunction, which promotes the separation of photoelectrons and holes, thus producing more reactive oxygen species (ROS) for killing bacteria. The synergism of mesoporous structure, photothermal effect and photocatalytic ROS makes the developed CoO/BiOCl a promising antibacterial material, which shows outstanding antibacterial activity with an inhibition rate of nearly 100 % against Escherichia coli (E. coli) within 8 min. This work provides inspiration for designing multimodal synergistic nanoplatform for antibacterial applications.
抗生素的过度使用导致了耐药菌甚至超级细菌的出现,因此开发有前景的、无抗生素的替代品势在必行。在此,构建了一种二维/二维(2D/2D)介孔 CoO/BiOCl 纳米复合材料的多模式抗菌纳米平台,具有“一石三鸟”的效果:(1)使用介孔 CoO 可以增大纳米复合材料的表面积并促进细菌的吸附;(2)CoO 表现出显著的全光谱吸收和光致自热效应,可提高 CoO/BiOCl 的温度,有助于杀死细菌;(3)p 型 CoO 和 n 型 BiOCl 形成 p-n 异质结,促进光生电子和空穴的分离,从而产生更多的活性氧物种(ROS)来杀死细菌。介孔结构、光热效应和光催化 ROS 的协同作用使所开发的 CoO/BiOCl 成为一种有前途的抗菌材料,它在 8 分钟内对大肠杆菌(E. coli)的抑制率接近 100%,表现出出色的抗菌活性。这项工作为设计用于抗菌应用的多模式协同纳米平台提供了灵感。