Suppr超能文献

一种新型牙种植体设计的有限元分析:种植体直径、长度和材料对其生物力学行为的影响。

A Finite Element Analysis of a New Dental Implant Design: The Influence of the Diameter, Length, and Material of an Implant on Its Biomechanical Behavior.

作者信息

González-Mederos Pedro, Rodríguez-Guerra Jennifer, González Jesús E, Picardo Alberto, Torres Yadir

机构信息

Departamento de Biomateriales Cerámicos y Metálicos, Centro de Biomateriales, Universidad de La Habana, Ave. Universidad s/n Entre G y Ronda, Vedado, La Habana 10400, Cuba.

Grupo de Biomecánica, Facultad de Mecánica, Universidad Tecnológica de la Habana "José Antonio Echeverría", Dirección Calle 114, # 11901, e/Ciclovía y Rotonda, Marianao, Cujae, La Habana 19390, Cuba.

出版信息

Materials (Basel). 2025 Jun 7;18(12):2692. doi: 10.3390/ma18122692.

Abstract

It is widely recognized that excessive stress and/or strain can lead to peri-implant bone atrophy; therefore, the clinical success of dental implants is intrinsically related to their biomechanical behavior. This study evaluates the influence of the diameter, length, and material [Ti6Al4V (α+β Ti) and Ti35Nb7Zr5Ta (β-Ti)] of a novel cylindrical dental implant on stress and strain levels within maxillary bone of type II quality. The implant design aims to ensure an appropriate distribution of stresses and strains within the peri-implant bone structures (cortical and trabecular bones) while also facilitating surgical machining by requiring a simple, linear, and less expensive bone incision. This approach minimizes the risk of thermal necrosis, a common complication in osteotomies for conical implants that can lead to peri-implant bone loss. Using finite element analysis, stress and strain patterns were evaluated in the maxillary second premolar region under static delayed loading. The results reveal that the cortical bone strains remained below the critical threshold (0.003) to prevent resorption. In the trabecular bone, only larger diameter/length configurations satisfied the previous strain criterion. In all simulations, trabecular bone stress remained below 3 MPa, whereas cortical bone stress peaked at 78 MPa. Notably, the implant model with the largest diameter/length minimized stress and strain concentrations in type II bone when compared to smaller designs, thereby demonstrating its biomechanical advantage.

摘要

人们普遍认识到,过度的应力和/或应变会导致种植体周围骨萎缩;因此,牙种植体的临床成功与其生物力学行为有着内在联系。本研究评估了一种新型圆柱形牙种植体的直径、长度和材料[Ti6Al4V(α+β钛)和Ti35Nb7Zr5Ta(β钛)]对II类质量上颌骨内应力和应变水平的影响。该种植体设计旨在确保种植体周围骨结构(皮质骨和松质骨)内应力和应变的适当分布,同时通过要求简单、线性且成本较低的骨切口来便于手术操作。这种方法将热坏死的风险降至最低,热坏死是锥形种植体截骨术中常见的并发症,可导致种植体周围骨丢失。使用有限元分析,在静态延迟加载下对上颌第二前磨牙区域的应力和应变模式进行了评估。结果显示,皮质骨应变保持在防止吸收的临界阈值(0.003)以下。在松质骨中,只有较大直径/长度的构型满足先前的应变标准。在所有模拟中,松质骨应力保持在3 MPa以下,而皮质骨应力峰值为78 MPa。值得注意的是,与较小设计相比,直径/长度最大的种植体模型在II类骨中使应力和应变集中最小化,从而证明了其生物力学优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b212/12194625/8e745fbf1550/materials-18-02692-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验