Lee Minsu, Kim Hohyeong, Son Seok-Won, Ahn Jinho
Industrial Components R&D Department, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea.
Department of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Materials (Basel). 2025 Jun 10;18(12):2722. doi: 10.3390/ma18122722.
316L stainless steel is widely employed in various industrial sectors, including shipbuilding, offshore plants, high-temperature/high-pressure (HTHP) piping systems, and hydrogen infrastructure, due to its excellent mechanical stability, superior corrosion resistance, and robust resistance to hydrogen embrittlement. This study presents 316L stainless steel alloys fabricated via hot isostatic pressing (HIP), conducted at 1300 °C and 100 MPa for 2 h, incorporating CrN powder and an optimized Ni/Mn ratio based on the nickel equivalent (Ni_eq). During HIP, CrN decomposition yielded a uniformly refined, dense austenitic microstructure, with enhanced corrosion resistance and mechanical performance. Corrosion resistance was evaluated by potentiodynamic polarization in 3.5 wt.% NaCl after 1 h of OCP stabilization, using a scan range of -0.25 V to +1.5 V (Ag/AgCl) at 1 mV/s. Optimization of the Ni/Mn ratio effectively improved the pitting corrosion resistance and mechanical strength. It is cost-effective to partially substitute Ni with Mn. Of the various alloys, C13Ni-N exhibited significantly enhanced hardness (~30% increase from 158.3 to 206.2 HV) attributable to nitrogen-induced solid solution strengthening. E11Ni-HM exhibited the highest pitting corrosion resistance given the superior PREN value (31.36). In summary, the incorporation of CrN and adjustment of the Ni/Mn ratio effectively improved the performance of 316L stainless steel alloys. Notably, alloy E11Ni-HM demonstrated a low corrosion current density of 0.131 μA/cm, indicating superior corrosion resistance. These findings offer valuable insights for developing cost-efficient, mechanically robust corrosion-resistant materials for hydrogen-related applications. Further research will evaluate alloy resistance to hydrogen embrittlement and investigate long-term material stability.
316L不锈钢因其出色的机械稳定性、卓越的耐腐蚀性和强大的抗氢脆性能,被广泛应用于包括造船、海上平台、高温/高压(HTHP)管道系统以及氢能基础设施在内的各个工业领域。本研究展示了通过热等静压(HIP)制备的316L不锈钢合金,该过程在1300°C和100MPa的条件下进行2小时,其中加入了CrN粉末,并基于镍当量(Ni_eq)优化了Ni/Mn比。在热等静压过程中,CrN分解产生了均匀细化、致密的奥氏体微观结构,其耐腐蚀性和机械性能得到了增强。在开路电位(OCP)稳定1小时后,通过在3.5 wt.% NaCl溶液中进行动电位极化来评估耐腐蚀性,扫描范围为-0.25 V至+1.5 V(Ag/AgCl),扫描速率为1 mV/s。Ni/Mn比的优化有效地提高了点蚀抗性和机械强度。用Mn部分替代Ni具有成本效益。在各种合金中,C13Ni-N由于氮引起的固溶强化,硬度显著提高(从158.3 HV增加到206.2 HV,约增加30%)。E11Ni-HM由于其优异的耐点蚀当量值(PREN)(31.36),表现出最高的点蚀抗性。总之,CrN的加入和Ni/Mn比的调整有效地改善了316L不锈钢合金的性能。值得注意的是,合金E11Ni-HM的腐蚀电流密度低至0.131 μA/cm²,表明其具有优异的耐腐蚀性。这些发现为开发用于氢能相关应用的具有成本效益、机械性能强大的耐腐蚀材料提供了有价值的见解。进一步的研究将评估合金的抗氢脆性能,并研究材料的长期稳定性。