Cheng Jia, Huang Jibo, Li Haifan, Zhang Kejie, Lan Haiming, Xin Hongmin, Huang Renzhong
China Yangtze Power Co., Ltd., Yichang 443002, China.
Guangzhou Institute of Hubei Chaozhuo Aviation Technology Co., Ltd., Guangzhou 510530, China.
Materials (Basel). 2025 Jun 13;18(12):2787. doi: 10.3390/ma18122787.
In this study, copper-titanium (Cu-Ti) composite coatings with 6 wt.% titanium content were fabricated via cold spray additive manufacturing (CSAM) using nitrogen as the propellant gas. The synergistic effects of propellant gas temperatures (600 °C, 700 °C, 800 °C) and post-heat treatment temperatures (350 °C, 380 °C, 400 °C) on the microstructure and tensile properties were systematically investigated. Tensile testing, microhardness characterization, and fractography analysis revealed that increasing the propellant gas temperature significantly enhanced the plastic deformation of copper particles, leading to simultaneous improvements in deposit density and interfacial bonding strength. The as-sprayed specimen prepared at 800 °C propellant gas temperature exhibited a tensile strength of 338 MPa, representing a 69% increase over the 600 °C specimen. Post-heat treatment effectively eliminated the work-hardening effects induced by cold spraying, with the 400 °C treated material achieving an elongation of 15% while maintaining tensile strength above 270 MPa. Microstructural analysis demonstrated that high propellant gas temperatures (800 °C) promoted the formation of dense lamellar stacking structures in copper particles, which, combined with a recrystallized fine-grained microstructure induced by 400 °C heat treatment, enabled synergistic optimization of strength and ductility. This work provides critical experimental insights for process optimization in CSAM-fabricated Cu-Ti composites.
在本研究中,采用氮气作为推进气体,通过冷喷涂增材制造(CSAM)制备了钛含量为6 wt.%的铜钛(Cu-Ti)复合涂层。系统研究了推进气体温度(600℃、700℃、800℃)和后热处理温度(350℃、380℃、400℃)对微观结构和拉伸性能的协同影响。拉伸试验、显微硬度表征和断口分析表明,提高推进气体温度显著增强了铜颗粒的塑性变形,从而同时提高了沉积密度和界面结合强度。在800℃推进气体温度下制备的喷涂态试样的抗拉强度为338 MPa,比600℃试样提高了69%。后热处理有效地消除了冷喷涂引起的加工硬化效应,400℃处理的材料伸长率达到15%,同时抗拉强度保持在270 MPa以上。微观结构分析表明,高推进气体温度(800℃)促进了铜颗粒中致密层状堆叠结构的形成,再结合400℃热处理诱导的再结晶细晶微观结构,实现了强度和延展性的协同优化。这项工作为CSAM制备的Cu-Ti复合材料的工艺优化提供了关键的实验见解。