Suppr超能文献

预测矿物粉改性沥青的流变性能:装袋法、提升法和堆叠法与单一机器学习模型的比较

Predicting Rheological Properties of Asphalt Modified with Mineral Powder: Bagging, Boosting, and Stacking vs. Single Machine Learning Models.

作者信息

Huang Haibing, Xu Zujie, Li Xiaoliang, Liu Bin, Fan Xiangyang, Ding Haonan, Xu Wen

机构信息

Xinyu Highway Survey and Design Institute, Xinyu 338000, China.

Road Material and Structure Engineering Technology Research Center of Jiangxi Provincial, Jiangxi Communications Investment Maintenance Technology Group Co., Ltd., Nanchang 330000, China.

出版信息

Materials (Basel). 2025 Jun 19;18(12):2913. doi: 10.3390/ma18122913.

Abstract

This study systematically compares the predictive performance of single machine learning (ML) models (KNN, Bayesian ridge regression, decision tree) and ensemble learning methods (bagging, boosting, stacking) for quantifying the rheological properties of mineral powder-modified asphalt, specifically the complex shear modulus (G*) and the phase angle (). We used two emulsifiers and three mineral powders for fabricating modified emulsified asphalt and conducting rheological property tests, respectively. Dynamic shear rheometer (DSR) test data were preprocessed using the local outlier factor (LOF) algorithm, followed by K-fold cross-validation (K = 5) and Bayesian optimization to tune model hyperparameters. This framework uniquely employs cross-validated predictions from base models as input features for the meta-learner, reducing information leakage and enhancing generalization. Traditional single ML models struggle to characterize accurately as a result, and an innovative stacking model was developed, integrating predictions from four heterogeneous base learners-KNN, decision tree (DT), random forest (RF), and XGBoost-with a Bayesian ridge regression meta-learner. Results demonstrate that ensemble models outperform single models significantly, with the stacking model achieving the highest accuracy ( = 0.9727 for G* and = 0.9990 for ). Shapley additive explanations (SHAP) analysis reveals temperature and mineral powder type as key factors, addressing the "black box" limitation of ML in materials science. This study validates the stacking model as a robust framework for optimizing asphalt mixture design, offering insights into material selection and pavement performance improvement.

摘要

本研究系统地比较了单机学习(ML)模型(K近邻、贝叶斯岭回归、决策树)和集成学习方法(装袋法、提升法、堆叠法)在量化矿物粉末改性沥青流变特性方面的预测性能,具体为复数剪切模量(G*)和相位角()。我们分别使用两种乳化剂和三种矿物粉末来制备改性乳化沥青并进行流变性能测试。动态剪切流变仪(DSR)测试数据使用局部离群因子(LOF)算法进行预处理,随后进行K折交叉验证(K = 5)和贝叶斯优化以调整模型超参数。该框架独特地采用基础模型的交叉验证预测作为元学习器的输入特征,减少信息泄露并增强泛化能力。传统的单机学习模型因此难以准确表征,于是开发了一种创新的堆叠模型,将来自四个异构基础学习器——K近邻、决策树(DT)、随机森林(RF)和XGBoost——的预测与贝叶斯岭回归元学习器集成在一起。结果表明,集成模型显著优于单机模型,堆叠模型达到了最高的准确率(G*为0.9727,为0.9990)。夏普利加法解释(SHAP)分析揭示温度和矿物粉末类型是关键因素,解决了材料科学中机器学习的“黑箱”局限性。本研究验证了堆叠模型作为优化沥青混合料设计的稳健框架,为材料选择和路面性能改善提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f4/12195200/bb2551aeac2c/materials-18-02913-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验