Suppr超能文献

使用分布式MIMO FMCW雷达的高分辨率定位

High-Resolution Localization Using Distributed MIMO FMCW Radars.

作者信息

Park Huijea, Chung Seungsu, Park Jaehyun, Huang Yang

机构信息

Division of Smart Robot Convergence and Application Engineering, Department of Electronic Engineering, Pukyong National University, Busan 48513, Republic of Korea.

College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

Sensors (Basel). 2025 Jun 6;25(12):3579. doi: 10.3390/s25123579.

Abstract

Due to its fast processing time and robustness against harsh environmental conditions, the frequency modulated continuous waveform (FMCW) multiple-input multiple-output (MIMO) radar is widely used for target localization. For high-accuracy localization, the two-dimensional multiple signal classification (2D MUSIC) algorithm can be applied to signals received by a single FMCW MIMO radar, achieving high-resolution positioning performance. To further enhance estimation accuracy, received signals or MUSIC spectra from multiple FMCW MIMO radars are often collected at a data fusion center and processed coherently. However, this approach increases data communication overhead and implementation complexity. To address these challenges, we propose an efficient high-resolution target localization algorithm. In the proposed method, the target position estimates from multiple FMCW MIMO radars are collected and combined using a weighted averaging approach to determine the target's position within a unified coordinate system at the data fusion center. We first analyze the achievable resolution in the unified coordinate system, considering the impact of local parameter estimation errors. Based on this analysis, weights are assigned according to the achievable resolution within the unified coordinate framework. Notably, due to the typically limited number of antennas in FMCW MIMO radars, the azimuth angle resolution tends to be relatively lower than the range resolution. As a result, the achievable resolution in the unified coordinate system depends on the placement of each FMCW MIMO radar. The performance of the proposed scheme is validated using both synthetic simulation data and experimentally measured data, demonstrating its effectiveness in real-world scenarios.

摘要

由于其处理速度快且对恶劣环境条件具有鲁棒性,调频连续波(FMCW)多输入多输出(MIMO)雷达被广泛用于目标定位。为了实现高精度定位,二维多重信号分类(2D MUSIC)算法可应用于单个FMCW MIMO雷达接收到的信号,从而实现高分辨率定位性能。为了进一步提高估计精度,通常会在数据融合中心收集来自多个FMCW MIMO雷达的接收信号或MUSIC频谱并进行相干处理。然而,这种方法增加了数据通信开销和实现复杂度。为了应对这些挑战,我们提出了一种高效的高分辨率目标定位算法。在所提出的方法中,来自多个FMCW MIMO雷达的目标位置估计值在数据融合中心被收集起来,并使用加权平均方法进行组合,以确定目标在统一坐标系中的位置。我们首先分析统一坐标系中可实现的分辨率,考虑局部参数估计误差的影响。基于此分析,根据统一坐标框架内可实现的分辨率分配权重。值得注意的是,由于FMCW MIMO雷达中的天线数量通常有限,方位角分辨率往往相对低于距离分辨率。因此,统一坐标系中可实现的分辨率取决于每个FMCW MIMO雷达的布局。使用合成仿真数据和实测数据对所提方案的性能进行了验证,证明了其在实际场景中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034e/12196919/40ff2e40bbbf/sensors-25-03579-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验