Manogaran Nalini, Shankar Yamini Bhavani, Nandagopal Malarvizhi, Su Hui-Kai, Kuo Wen-Kai, Ravichandran Sanmugasundaram, Seerangan Koteeswaran
Department of Computer Science and Business Systems, S.A. Engineering College (Autonomous), Chennai 600077, Tamil Nadu, India.
Department of Networking and Communications, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India.
Sensors (Basel). 2025 Jun 9;25(12):3617. doi: 10.3390/s25123617.
As cyber-physical systems are applied not only to crucial infrastructure but also to day-to-day technologies, from industrial control systems through to smart grids and medical devices, they have become very significant. Cyber-physical systems are a target for various security attacks, too; their growing complexity and digital networking necessitate robust cybersecurity solutions. Recent research indicates that deep learning can improve CPS security through intelligent threat detection and response. We still foresee limitations to scalability, data privacy, and handling the dynamic nature of CPS environments in existing approaches. We developed the CPS ShieldNet Fusion model as a comprehensive security framework for protecting CPS from ever-evolving cyber threats. We will present a model that integrates state-of-the-art methodologies in both federated learning and optimization paradigms through the combination of the Federated Residual Convolutional Network (FedRCNet) and the EEL-Levy Fusion Optimization (ELFO) methods. This involves the incorporation of the Federated Residual Convolutional Network into an optimization method called EEL-Levy Fusion Optimization. This preserves data privacy through decentralized model training and improves complex security threat detection. We report the results of a rigorous evaluation of CICIoT-2023, Edge-IIoTset-2023, and UNSW-NB datasets containing the CPS ShieldNet Fusion model at the forefront in terms of accuracy and effectiveness against several threats in different CPS environments. Therefore, these results underline the potential of the proposed framework to improve CPS security by providing a robust and scalable solution to current problems and future threats.
随着网络物理系统不仅应用于关键基础设施,还应用于日常技术,从工业控制系统到智能电网和医疗设备,它们变得非常重要。网络物理系统也是各种安全攻击的目标;其日益增长的复杂性和数字网络需要强大的网络安全解决方案。最近的研究表明,深度学习可以通过智能威胁检测和响应来提高网络物理系统的安全性。我们仍然预见到现有方法在可扩展性、数据隐私以及处理网络物理系统环境的动态特性方面存在局限性。我们开发了CPS ShieldNet融合模型,作为一个全面的安全框架,用于保护网络物理系统免受不断演变的网络威胁。我们将展示一个通过联合残差卷积网络(FedRCNet)和EEL-列维融合优化(ELFO)方法的结合,在联邦学习和优化范式中集成了最先进方法的模型。这涉及将联合残差卷积网络纳入一种名为EEL-列维融合优化的优化方法中。这通过分散式模型训练保护数据隐私,并改进复杂的安全威胁检测。我们报告了对CICIoT-2023、Edge-IIoTset-2023和新南威尔士大学-网络数据集进行严格评估的结果,在针对不同网络物理系统环境中的多种威胁的准确性和有效性方面,CPS ShieldNet融合模型处于领先地位。因此,这些结果强调了所提出框架通过为当前问题和未来威胁提供强大且可扩展的解决方案来提高网络物理系统安全性的潜力。
Sensors (Basel). 2021-7-28
Sensors (Basel). 2022-4-6
Cochrane Database Syst Rev. 2012-12-12
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2017-12-22
J Med Internet Res. 2021-11-2
Sensors (Basel). 2024-6-13
Sensors (Basel). 2024-5-14
Healthcare (Basel). 2023-1-29