文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

信息物理系统ShieldNet融合中的联邦学习与EEL-Levy优化:一种网络物理安全的新范式

Federated Learning and EEL-Levy Optimization in CPS ShieldNet Fusion: A New Paradigm for Cyber-Physical Security.

作者信息

Manogaran Nalini, Shankar Yamini Bhavani, Nandagopal Malarvizhi, Su Hui-Kai, Kuo Wen-Kai, Ravichandran Sanmugasundaram, Seerangan Koteeswaran

机构信息

Department of Computer Science and Business Systems, S.A. Engineering College (Autonomous), Chennai 600077, Tamil Nadu, India.

Department of Networking and Communications, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India.

出版信息

Sensors (Basel). 2025 Jun 9;25(12):3617. doi: 10.3390/s25123617.


DOI:10.3390/s25123617
PMID:40573503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12196849/
Abstract

As cyber-physical systems are applied not only to crucial infrastructure but also to day-to-day technologies, from industrial control systems through to smart grids and medical devices, they have become very significant. Cyber-physical systems are a target for various security attacks, too; their growing complexity and digital networking necessitate robust cybersecurity solutions. Recent research indicates that deep learning can improve CPS security through intelligent threat detection and response. We still foresee limitations to scalability, data privacy, and handling the dynamic nature of CPS environments in existing approaches. We developed the CPS ShieldNet Fusion model as a comprehensive security framework for protecting CPS from ever-evolving cyber threats. We will present a model that integrates state-of-the-art methodologies in both federated learning and optimization paradigms through the combination of the Federated Residual Convolutional Network (FedRCNet) and the EEL-Levy Fusion Optimization (ELFO) methods. This involves the incorporation of the Federated Residual Convolutional Network into an optimization method called EEL-Levy Fusion Optimization. This preserves data privacy through decentralized model training and improves complex security threat detection. We report the results of a rigorous evaluation of CICIoT-2023, Edge-IIoTset-2023, and UNSW-NB datasets containing the CPS ShieldNet Fusion model at the forefront in terms of accuracy and effectiveness against several threats in different CPS environments. Therefore, these results underline the potential of the proposed framework to improve CPS security by providing a robust and scalable solution to current problems and future threats.

摘要

随着网络物理系统不仅应用于关键基础设施,还应用于日常技术,从工业控制系统到智能电网和医疗设备,它们变得非常重要。网络物理系统也是各种安全攻击的目标;其日益增长的复杂性和数字网络需要强大的网络安全解决方案。最近的研究表明,深度学习可以通过智能威胁检测和响应来提高网络物理系统的安全性。我们仍然预见到现有方法在可扩展性、数据隐私以及处理网络物理系统环境的动态特性方面存在局限性。我们开发了CPS ShieldNet融合模型,作为一个全面的安全框架,用于保护网络物理系统免受不断演变的网络威胁。我们将展示一个通过联合残差卷积网络(FedRCNet)和EEL-列维融合优化(ELFO)方法的结合,在联邦学习和优化范式中集成了最先进方法的模型。这涉及将联合残差卷积网络纳入一种名为EEL-列维融合优化的优化方法中。这通过分散式模型训练保护数据隐私,并改进复杂的安全威胁检测。我们报告了对CICIoT-2023、Edge-IIoTset-2023和新南威尔士大学-网络数据集进行严格评估的结果,在针对不同网络物理系统环境中的多种威胁的准确性和有效性方面,CPS ShieldNet融合模型处于领先地位。因此,这些结果强调了所提出框架通过为当前问题和未来威胁提供强大且可扩展的解决方案来提高网络物理系统安全性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/ac89787b5304/sensors-25-03617-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/361ae5ece76f/sensors-25-03617-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/d398daedeeb0/sensors-25-03617-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/f441bf9ae245/sensors-25-03617-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/45e8f165bbd2/sensors-25-03617-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/0e349bef6136/sensors-25-03617-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/200373093bbe/sensors-25-03617-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/4bd718e11f9a/sensors-25-03617-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/7aea8fef84af/sensors-25-03617-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/8f8c1dc830cc/sensors-25-03617-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/40ccbc482da2/sensors-25-03617-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/ee9f92bb61d0/sensors-25-03617-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/db0b39e1dca4/sensors-25-03617-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/00ac64569055/sensors-25-03617-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/ae58bfc7b60e/sensors-25-03617-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/43a6a28bedad/sensors-25-03617-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/61e772244fb5/sensors-25-03617-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/28d133da1dd7/sensors-25-03617-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/0df02002110e/sensors-25-03617-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/1433775303cb/sensors-25-03617-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/631073889bc0/sensors-25-03617-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/cb96acbea912/sensors-25-03617-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/69eb747c3332/sensors-25-03617-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/4406a6d15fc9/sensors-25-03617-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/b781582477f2/sensors-25-03617-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/ac89787b5304/sensors-25-03617-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/361ae5ece76f/sensors-25-03617-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/d398daedeeb0/sensors-25-03617-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/f441bf9ae245/sensors-25-03617-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/45e8f165bbd2/sensors-25-03617-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/0e349bef6136/sensors-25-03617-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/200373093bbe/sensors-25-03617-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/4bd718e11f9a/sensors-25-03617-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/7aea8fef84af/sensors-25-03617-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/8f8c1dc830cc/sensors-25-03617-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/40ccbc482da2/sensors-25-03617-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/ee9f92bb61d0/sensors-25-03617-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/db0b39e1dca4/sensors-25-03617-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/00ac64569055/sensors-25-03617-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/ae58bfc7b60e/sensors-25-03617-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/43a6a28bedad/sensors-25-03617-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/61e772244fb5/sensors-25-03617-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/28d133da1dd7/sensors-25-03617-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/0df02002110e/sensors-25-03617-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/1433775303cb/sensors-25-03617-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/631073889bc0/sensors-25-03617-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/cb96acbea912/sensors-25-03617-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/69eb747c3332/sensors-25-03617-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/4406a6d15fc9/sensors-25-03617-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/b781582477f2/sensors-25-03617-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a2c/12196849/ac89787b5304/sensors-25-03617-g025.jpg

相似文献

[1]
Federated Learning and EEL-Levy Optimization in CPS ShieldNet Fusion: A New Paradigm for Cyber-Physical Security.

Sensors (Basel). 2025-6-9

[2]
Influence of Human Factors on Cyber Security within Healthcare Organisations: A Systematic Review.

Sensors (Basel). 2021-7-28

[3]
Augmented Reality (AR) and Cyber-Security for Smart Cities-A Systematic Literature Review.

Sensors (Basel). 2022-4-6

[4]
Psychological interventions for adults who have sexually offended or are at risk of offending.

Cochrane Database Syst Rev. 2012-12-12

[5]
A Systematic Review on Machine Learning and Deep Learning Models for Electronic Information Security in Mobile Networks.

Sensors (Basel). 2022-3-4

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[8]
Stakeholders' perceptions and experiences of factors influencing the commissioning, delivery, and uptake of general health checks: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2025-3-20

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[10]
Blockchain Integration With Digital Technology and the Future of Health Care Ecosystems: Systematic Review.

J Med Internet Res. 2021-11-2

本文引用的文献

[1]
Security Control of Cyber-Physical Systems under Cyber Attacks: A Survey.

Sensors (Basel). 2024-6-13

[2]
Smart City as Cooperating Smart Areas: On the Way of Symbiotic Cyber-Physical Systems Environment.

Sensors (Basel). 2024-5-14

[3]
Cyber-Physical Systems for High-Performance Machining of Difficult to Cut Materials in I5.0 Era-A Review.

Sensors (Basel). 2024-4-5

[4]
A Deep Learning-Driven Self-Conscious Distributed Cyber-Physical System for Renewable Energy Communities.

Sensors (Basel). 2023-5-7

[5]
Improved Wireless Medical Cyber-Physical System (IWMCPS) Based on Machine Learning.

Healthcare (Basel). 2023-1-29

[6]
Fast economic dispatch with false data injection attack in electricity-gas cyber-physical system: A data-driven approach.

ISA Trans. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索