Roques Axel, Keriven Serpollet Dimitri, Nicolaï Alice, Buffat Stéphane, James Yannick, Vayatis Nicolas, Bargiotas Ioannis, Vidal Pierre-Paul
Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-75006 Paris, France.
Training & Simulation, Thales AVS France SAS, 95520 Osny, France.
Sensors (Basel). 2025 Jun 9;25(12):3624. doi: 10.3390/s25123624.
The use of complex human-machine interfaces (HMIs) has grown rapidly over the last few decades in both industrial and personal contexts. Now more than ever, the study of mental workload (MWL) in HMI operators appears essential: when mental demand exceeds task load, cognitive overload arises, increasing the risk of work-related fatigue or accidents. In this paper, we propose a data-driven approach for the continuous estimation of the MWL of professional helicopter pilots in realistic simulated flights. Physiological and operational parameters were used to train a novel machine-learning model of MWL. Our algorithm achieves good performance (ROC AUC score 0.836 ± 0.081, the maximum F1 score 0.842 ± 0.078 and PR AUC score 0.820 ± 0.097) and shows that the operational information outperforms the physiological signals in terms of predictive power for MWL. Our results pave the way towards intelligent systems able to monitor the MWL of HMI operators in real time and question the relevancy of physiology-derived metrics for this task.
在过去几十年里,复杂人机界面(HMI)在工业和个人领域的应用迅速增长。如今,对HMI操作员的心理负荷(MWL)进行研究显得比以往任何时候都更为重要:当心理需求超过任务负荷时,就会出现认知过载,从而增加与工作相关的疲劳或事故风险。在本文中,我们提出了一种数据驱动的方法,用于在逼真的模拟飞行中持续估计专业直升机飞行员的MWL。利用生理和操作参数训练了一种新颖的MWL机器学习模型。我们的算法取得了良好的性能(ROC曲线下面积分数为0.836±0.081,最大F1分数为0.842±0.078,PR曲线下面积分数为0.820±0.097),并表明操作信息在MWL预测能力方面优于生理信号。我们的研究结果为能够实时监测HMI操作员MWL的智能系统铺平了道路,并对用于该任务的生理学衍生指标的相关性提出了质疑。