基于CMSA-Net的双边步态相机传感器融合帕金森病检测及在便携式设备上的实现

Parkinson's Disease Detection via Bilateral Gait Camera Sensor Fusion Using CMSA-Net and Implementation on Portable Device.

作者信息

Wang Jinxuan, Huo Hua, Liu Wei, Zhao Changwei, Kang Shilu, Ma Lan

机构信息

School of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China.

出版信息

Sensors (Basel). 2025 Jun 13;25(12):3715. doi: 10.3390/s25123715.

Abstract

The annual increase in the incidence of Parkinson's disease (PD) underscores the critical need for effective detection methods and devices. Gait video features based on camera sensors, as a crucial biomarker for PD, are well-suited for detection and show promise for the development of portable devices. Consequently, we developed a single-step segmentation method based on Savitzky-Golay (SG) filtering and a sliding window peak selection function, along with a Cross-Attention Fusion with Mamba-2 and Self-Attention Network (CMSA-Net). Additionally, we introduced a loss function based on Maximum Mean Discrepancy (MMD) to further enhance the fusion process. We evaluated our method on a dual-view gait video dataset that we collected in collaboration with a hospital, comprising 304 healthy control (HC) samples and 84 PD samples, achieving an accuracy of 89.10% and an F1-score of 81.11%, thereby attaining the best detection performance compared with other methods. Based on these methodologies, we designed a simple and user-friendly portable PD detection device. The device is equipped with various operating modes-including single-view, dual-view, and prior information correction-which enable it to adapt to diverse environments, such as residential and elder care settings, thereby demonstrating strong practical applicability.

摘要

帕金森病(PD)发病率的逐年上升凸显了对有效检测方法和设备的迫切需求。基于摄像头传感器的步态视频特征作为PD的关键生物标志物,非常适合检测,并且在便携式设备开发方面显示出前景。因此,我们开发了一种基于Savitzky-Golay(SG)滤波和滑动窗口峰值选择函数的单步分割方法,以及一种结合Mamba-2和自注意力网络的交叉注意力融合(CMSA-Net)。此外,我们引入了基于最大均值差异(MMD)的损失函数,以进一步增强融合过程。我们在与一家医院合作收集的双视角步态视频数据集上评估了我们的方法,该数据集包含304个健康对照(HC)样本和84个PD样本,准确率达到89.10%,F1分数达到81.11%,从而与其他方法相比获得了最佳检测性能。基于这些方法,我们设计了一种简单且用户友好的便携式PD检测设备。该设备配备了多种操作模式,包括单视角、双视角和先验信息校正,使其能够适应不同环境,如住宅和老年护理环境,从而展示出强大的实际适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索