Suppr超能文献

使用深度卷积神经网络和长短期记忆进行月度气候预测。

Monthly climate prediction using deep convolutional neural network and long short-term memory.

作者信息

Guo Qingchun, He Zhenfang, Wang Zhaosheng

机构信息

School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China.

Institute of Huanghe Studies, Liaocheng University, Liaocheng, 252000, China.

出版信息

Sci Rep. 2024 Jul 31;14(1):17748. doi: 10.1038/s41598-024-68906-6.

Abstract

Climate change affects plant growth, food production, ecosystems, sustainable socio-economic development, and human health. The different artificial intelligence models are proposed to simulate climate parameters of Jinan city in China, include artificial neural network (ANN), recurrent NN (RNN), long short-term memory neural network (LSTM), deep convolutional NN (CNN), and CNN-LSTM. These models are used to forecast six climatic factors on a monthly ahead. The climate data for 72 years (1 January 1951-31 December 2022) used in this study include monthly average atmospheric temperature, extreme minimum atmospheric temperature, extreme maximum atmospheric temperature, precipitation, average relative humidity, and sunlight hours. The time series of 12 month delayed data are used as input signals to the models. The efficiency of the proposed models are examined utilizing diverse evaluation criteria namely mean absolute error, root mean square error (RMSE), and correlation coefficient (R). The modeling result inherits that the proposed hybrid CNN-LSTM model achieves a greater accuracy than other compared models. The hybrid CNN-LSTM model significantly reduces the forecasting error compared to the models for the one month time step ahead. For instance, the RMSE values of the ANN, RNN, LSTM, CNN, and CNN-LSTM models for monthly average atmospheric temperature in the forecasting stage are 2.0669, 1.4416, 1.3482, 0.8015 and 0.6292 °C, respectively. The findings of climate simulations shows the potential of CNN-LSTM models to improve climate forecasting. Climate prediction will contribute to meteorological disaster prevention and reduction, as well as flood control and drought resistance.

摘要

气候变化影响植物生长、粮食生产、生态系统、可持续社会经济发展以及人类健康。人们提出了不同的人工智能模型来模拟中国济南市的气候参数,包括人工神经网络(ANN)、循环神经网络(RNN)、长短期记忆神经网络(LSTM)、深度卷积神经网络(CNN)以及CNN-LSTM。这些模型用于提前一个月预测六种气候因素。本研究中使用的72年(1951年1月1日至2022年12月31日)气候数据包括月平均气温、极端最低气温、极端最高气温、降水量、平均相对湿度和日照时数。将延迟12个月的数据时间序列用作模型的输入信号。利用平均绝对误差、均方根误差(RMSE)和相关系数(R)等多种评估标准来检验所提出模型的效率。建模结果表明,所提出的混合CNN-LSTM模型比其他对比模型具有更高的准确性。与提前一个月时间步长的模型相比,混合CNN-LSTM模型显著降低了预测误差。例如,在预测阶段,ANN、RNN、LSTM、CNN和CNN-LSTM模型的月平均气温RMSE值分别为2.0669、1.4416、1.3482、0.8015和0.6292°C。气候模拟结果显示了CNN-LSTM模型在改进气候预测方面的潜力。气候预测将有助于气象防灾减灾以及防洪抗旱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c48/11291741/bb19f5495217/41598_2024_68906_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验