Rosenhoover Marshall, Rushing John, Beck John, White Kelsey, Graves Sara
Information Technology and Systems Center, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
Sensors (Basel). 2025 Jun 13;25(12):3719. doi: 10.3390/s25123719.
Accurate, real-time estimation of rainfall from Doppler radars remains a challenging problem, particularly over complex terrain where vertical beam sampling, atmospheric effects, and radar quality limitations introduce significant biases. In this work, we leverage citizen science rain gauge observations to develop a deep learning framework that corrects biases in radar-derived surface precipitation rates at high temporal resolution. A key step in our approach is the construction of piecewise-linear rainfall accumulation functions, which align gauge measurements with radar estimates and allow for the generation of high-quality instantaneous rain rate labels from rain gauge observations. After validating gauges through a two-stage temporal and spatial consistency filter, we train an adapted ResNet-101 model to classify rainfall intensity from sequences of surface precipitation rate estimates. Our model substantially improves precipitation classification accuracy relative to NOAA's operational radar products within observed spatial regions, achieving large gains in precision, recall, and F1 score. While generalization to completely unseen regions remains more challenging, particularly for higher-intensity rainfall, modest improvements over baseline radar estimates are still observed in low-intensity rainfall. These results highlight how combining citizen science data with physically informed accumulation fitting and deep learning can meaningfully improve real-time radar-based rainfall estimation and support operational forecasting in complex environments.
利用多普勒雷达进行准确的实时降雨估计仍然是一个具有挑战性的问题,特别是在复杂地形上,垂直波束采样、大气效应和雷达质量限制会引入显著偏差。在这项工作中,我们利用公民科学雨量计观测数据来开发一个深度学习框架,该框架能在高时间分辨率下校正雷达衍生的地面降水率偏差。我们方法的一个关键步骤是构建分段线性降雨累积函数,它将雨量计测量值与雷达估计值对齐,并允许从雨量计观测数据中生成高质量的瞬时降雨率标签。在通过两阶段的时间和空间一致性滤波器对雨量计进行验证后,我们训练了一个经过改进的ResNet-101模型,以便根据地面降水率估计序列对降雨强度进行分类。相对于美国国家海洋和大气管理局(NOAA)的业务雷达产品,我们的模型在观测空间区域内大幅提高了降水分类准确率,在精度、召回率和F1分数方面都有很大提升。虽然推广到完全未见过的区域仍然更具挑战性,特别是对于高强度降雨,但在低强度降雨中仍能观察到相对于基线雷达估计有适度改进。这些结果突出了将公民科学数据与基于物理的累积拟合和深度学习相结合,如何能够显著改善基于雷达的实时降雨估计,并支持复杂环境中的业务预报。