Rashkov Georgi D, Stefanov Martin A, Misra Amarendra N, Apostolova Emilia L
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
Faculty of Sciences, Sri Sri University, Cuttack 754006, Odisha, India.
Plants (Basel). 2025 Jun 16;14(12):1846. doi: 10.3390/plants14121846.
In this study, the functions of the photosynthetic machinery were evaluated using chlorophyll fluorescence technique (PAM and JIP test) in pea plants ( L. cv Borec) and its LHC II oligomerization variants (mutants / and /). The oligomeric forms of LHCII increased in the following order: / < Borec wt < /. Data revealed that the mutant with higher LHCII oligomerization (/) at low light intensity (LL, 150 µmol photons/m·s) exhibited the following: (i) decreased energy dissipation and increased electron transport efficiency; (ii) higher reaction center density; (iii) increased amounts of the open reaction centers (qp) and their excitation efficiency (Φexc); and (iv) influenced the reoxidation of Q, alleviating its interaction with plastoquinone. These effects enhanced photosynthetic performance related to PSII photochemistry (PI) and overall photosynthetic efficiency (PItotal). High light intensity (HL, 500 µmol photons/m·s) caused a reduction in open reaction centers (qp), excitation efficiency (Φexc), photochemical energy conversion of PSII (Φ), maximum efficiency of PSII photochemistry in light (Fv'/Fm'), and linear electron transport via PSII, with more pronounced effects observed in membranes with a lower degree of LHCII oligomerization (/). This study provides novel experimental evidence for the pivotal role of the LHCII structural organization in determining the efficiency of light-dependent reactions of photosynthesis.
在本研究中,利用叶绿素荧光技术(PAM和JIP测试)对豌豆植株(L. cv Borec)及其LHC II寡聚变体(突变体/和/)的光合机构功能进行了评估。LHCII的寡聚形式按以下顺序增加:/ < Borec野生型 < /。数据显示,在低光强(LL,150 µmol光子/m²·s)下具有较高LHCII寡聚化程度(/)的突变体表现出以下情况:(i)能量耗散减少,电子传递效率增加;(ii)反应中心密度更高;(iii)开放反应中心(qp)的数量及其激发效率(Φexc)增加;(iv)影响Q的再氧化,减轻其与质体醌的相互作用。这些效应增强了与PSII光化学相关的光合性能(PI)和整体光合效率(PItotal)。高光强(HL,500 µmol光子/m²·s)导致开放反应中心(qp)、激发效率(Φexc)、PSII的光化学能量转换(Φ)、光下PSII光化学的最大效率(Fv'/Fm')以及通过PSII的线性电子传递减少,在LHCII寡聚化程度较低(/)的膜中观察到的影响更为明显。本研究为LHCII结构组织在决定光合作用光依赖反应效率方面的关键作用提供了新的实验证据。