Jia Qingmei, Bielefeldt-Ohmann Helle, Masleša-Galić Saša, Bowen Richard A, Horwitz Marcus A
Division of Infectious Diseases, Department of Medicine, 32-150 Center for Health Sciences, School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, QLD 4072, Australia.
Vaccines (Basel). 2025 Jun 12;13(6):633. doi: 10.3390/vaccines13060633.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), has rapidly evolved, giving rise to multiple Variants of Concern-including Alpha, Beta, Gamma, Delta, and Omicron-which emerged independently across different regions. Licensed COVID-19 vaccines primarily target the highly mutable spike protein, resulting in reduced efficacy due to immune escape by emerging variants. Previously, we developed a live attenuated LVS Δ single-vector platform COVID-19 vaccine, rLVS Δ/MN, expressing the conserved membrane (M) and nucleocapsid (N) proteins from the early SARS-CoV-2 WA-01/2020 strain. In this study, we evaluate the efficacy of rLVS Δ/MN and an enhanced version, rLVS Δ::RdRp/MN, which additionally expresses the conserved RNA-dependent RNA polymerase (RdRp) protein from the same strain, in a hamster model. Both vaccine candidates were administered orally or intranasally to golden Syrian hamsters (equal numbers of males and females) and evaluated against intranasal challenge with SARS-CoV-2 Delta (B.1.617.2-AY.1) and Omicron (BA.5) variants. Vaccinated animals developed robust, TH1-biased IgG responses specific to the nucleocapsid protein. Following SARS-CoV-2 challenge, immunized hamsters exhibited reduced weight loss, lower oropharyngeal and lung viral titers, and improved lung pathology scores compared with unvaccinated controls. These findings support the potential of this universal vaccine to provide broad protection against current and future SARS-CoV-2 variants, with minimal need for updating.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是2019冠状病毒病(COVID-19)的病原体,它迅速进化,产生了多个值得关注的变异株,包括阿尔法、贝塔、伽马、德尔塔和奥密克戎,这些变异株在不同地区独立出现。已获许可的COVID-19疫苗主要针对高度可变的刺突蛋白,由于新出现的变异株导致免疫逃逸,从而降低了疫苗效力。此前,我们开发了一种减毒活LVSΔ单载体平台COVID-19疫苗rLVSΔ/MN,它表达来自早期SARS-CoV-2 WA-01/2020毒株的保守膜(M)蛋白和核衣壳(N)蛋白。在本研究中,我们在仓鼠模型中评估了rLVSΔ/MN以及一个增强版本rLVSΔ::RdRp/MN的效力,后者额外表达来自同一毒株的保守RNA依赖性RNA聚合酶(RdRp)蛋白。两种候选疫苗均通过口服或鼻内途径给予叙利亚金黄仓鼠(雄性和雌性数量相等),并针对SARS-CoV-2德尔塔(B.1.617.2-AY.1)和奥密克戎(BA.5)变异株的鼻内攻击进行评估。接种疫苗的动物产生了针对核衣壳蛋白的强大且偏向TH1的IgG反应。在受到SARS-CoV-2攻击后,与未接种疫苗的对照组相比,免疫后的仓鼠体重减轻减少,口咽和肺部病毒滴度降低,肺部病理评分改善。这些发现支持了这种通用疫苗有可能提供针对当前和未来SARS-CoV-2变异株广泛保护的潜力,且几乎无需更新。