文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

编码保守非刺突抗原的 T 细胞定向疫苗 BNT162b4 可保护动物免受严重的 SARS-CoV-2 感染。

The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection.

机构信息

BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.

BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.

出版信息

Cell. 2023 May 25;186(11):2392-2409.e21. doi: 10.1016/j.cell.2023.04.007. Epub 2023 Apr 13.


DOI:10.1016/j.cell.2023.04.007
PMID:37164012
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10099181/
Abstract

T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4 and CD8 T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).

摘要

T 细胞反应在预防β冠状病毒感染(包括 SARS-CoV-2)中发挥着重要作用,它们与降低 COVID-19 疾病严重程度和持续时间有关。为了增强针对 SARS-CoV-2 变体中很少改变的表位的 T 细胞免疫,我们设计了 BNT162b4,这是一种 mRNA 疫苗成分,旨在与编码刺突蛋白的 BNT162b2 联合使用。BNT162b4 编码 SARS-CoV-2 核衣壳、膜和 ORF1ab 蛋白中变异保守、具有免疫原性的片段,针对多种 HLA 等位基因。BNT162b4 在动物模型中单独或与 BNT162b2 联合使用时,可引发针对多种表位的多功能 CD4 和 CD8 T 细胞反应,同时保持对刺突蛋白的特异性免疫。重要的是,我们证明 BNT162b4 可保护仓鼠免受严重疾病的侵害,并降低在受到病毒变体挑战后的病毒滴度。这些数据表明,BNT162b2 和 BNT162b4 的联合使用可能会降低由循环或未来变体引起的 COVID-19 疾病严重程度和持续时间。BNT162b4 目前正在与 BA.4/BA.5 奥密克戎更新的二价 BNT162b2 (NCT05541861)联合进行临床评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/cfb951615e1d/figs7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/ae9f62d684b7/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/08a3aad04699/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/16161bb9a180/figs1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/460d11581412/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/16d7f7f78a7b/figs2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/449660cb9933/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/c302c1949b99/figs3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/fd8097faef25/figs4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/76be908b0d24/figs5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/3bd2d383e59d/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/c682264b4ebb/figs6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/e84b664e5da0/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/73a080ad0f3d/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/cfb951615e1d/figs7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/ae9f62d684b7/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/08a3aad04699/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/16161bb9a180/figs1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/460d11581412/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/16d7f7f78a7b/figs2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/449660cb9933/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/c302c1949b99/figs3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/fd8097faef25/figs4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/76be908b0d24/figs5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/3bd2d383e59d/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/c682264b4ebb/figs6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/e84b664e5da0/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/73a080ad0f3d/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/10099181/cfb951615e1d/figs7_lrg.jpg

相似文献

[1]
The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection.

Cell. 2023-5-25

[2]
Omicron BA.1 Mutations in SARS-CoV-2 Spike Lead to Reduced T-Cell Response in Vaccinated and Convalescent Individuals.

Viruses. 2022-7-19

[3]
Omicron BA.1-specific T-cell responses in adults vaccinated with CoronaVac or BNT162b2 in Hong Kong: an observational cohort study.

Lancet Microbe. 2023-6

[4]
Single Immunization with Recombinant ACAM2000 Vaccinia Viruses Expressing the Spike and the Nucleocapsid Proteins Protects Hamsters against SARS-CoV-2-Caused Clinical Disease.

J Virol. 2022-5-11

[5]
An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters.

Nat Commun. 2023-4-12

[6]
Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration.

Front Immunol. 2023

[7]
Mutations in spike protein T cell epitopes of SARS-COV-2 variants: Plausible influence on vaccine efficacy.

Biochim Biophys Acta Mol Basis Dis. 2022-9-1

[8]
Toward a pan-SARS-CoV-2 vaccine targeting conserved epitopes on spike and non-spike proteins for potent, broad and durable immune responses.

PLoS Pathog. 2023-4

[9]
A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity.

Mol Ther. 2022-9-7

[10]
Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine.

Front Immunol. 2023

引用本文的文献

[1]
A Multi-Antigen Broad-Spectrum Coronavirus Vaccine Induces Potent and Durable Cross-Protection Against Infection and Disease Caused by Multiple SARS-CoV-2 Variants.

Res Sq. 2025-8-20

[2]
Molecular basis of potent antiviral HLA-C-restricted CD8 T cell response to an immunodominant SARS-CoV-2 nucleocapsid epitope.

Nat Commun. 2025-8-28

[3]
A modular vaccine platform for optimized lipid nanoparticle mRNA immunogenicity.

Nat Biomed Eng. 2025-8-25

[4]
Structural basis of a human antibody targeting SARS-CoV-2 nucleocapsid protein dimerization domain and interfering with RNA-binding.

Commun Biol. 2025-8-19

[5]
T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome.

iScience. 2025-7-2

[6]
Universal Bacterium-Vectored COVID-19 Vaccine Expressing Early SARS-CoV-2 Conserved Proteins Cross-Protects Against Late Variants in Hamsters.

Vaccines (Basel). 2025-6-12

[7]
Establishing correlation between in vitro potency and in vivo immunogenicity for mRNA vaccines.

NPJ Vaccines. 2025-6-11

[8]
Predominant T-cell epitopes of SARS-CoV-2 restricted by multiple prevalent HLA-B and HLA-C allotypes in Northeast Asia.

Front Immunol. 2025-5-21

[9]
Multi-Antigen Viral-Vectored Vaccine Protects Against SARS-CoV-2 and Variants in a Lethal hACE2 Transgenic Mouse Model.

Vaccines (Basel). 2025-4-15

[10]
Pan-Variant SARS-CoV-2 Vaccines Induce Protective Immunity by Targeting Conserved Epitopes.

Adv Sci (Weinh). 2025-4

本文引用的文献

[1]
CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study.

mBio. 2023-10-31

[2]
A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice from mortality after infection with SARS-CoV-2 Beta.

Front Immunol. 2023

[3]
SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses.

Immunity. 2023-4-11

[4]
Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling.

Front Immunol. 2022

[5]
Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants.

Cell. 2023-1-19

[6]
Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution.

Nature. 2023-2

[7]
A comparative characterization of SARS-CoV-2-specific T cells induced by mRNA or inactive virus COVID-19 vaccines.

Cell Rep Med. 2022-11-15

[8]
Further humoral immunity evasion of emerging SARS-CoV-2 BA.4 and BA.5 subvariants.

Lancet Infect Dis. 2022-11

[9]
Mucosal plasma cells are required to protect the upper airway and brain from infection.

Immunity. 2022-11-8

[10]
Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models.

Sci Transl Med. 2022-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索