文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

体外细胞模型在药物相互作用预测和安全性评估新前沿的综述

A Review on New Frontiers in Drug-Drug Interaction Predictions and Safety Evaluations with In Vitro Cellular Models.

作者信息

Marques Lara, Vale Nuno

机构信息

PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.

RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.

出版信息

Pharmaceutics. 2025 Jun 6;17(6):747. doi: 10.3390/pharmaceutics17060747.


DOI:10.3390/pharmaceutics17060747
PMID:40574059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12195914/
Abstract

The characterization of a drug's ADME (absorption, distribution, metabolism, and excretion) profile is crucial for accurately determining its safety and efficacy. The rising prevalence of polypharmacy has significantly increased the risk of drug-drug interactions (DDIs). These interactions can lead to altered drug exposure, potentially compromising efficacy or increasing the risk of adverse drug reactions (ADRs), thereby posing significant clinical and regulatory concerns. Traditional methods for assessing potential DDIs rely heavily on in vitro models, including enzymatic assays and transporter studies. While indispensable, these approaches have inherent limitations in scalability, cost, and ability to predict complex interactions. Recent advancements in analytical technologies, particularly the development of more sophisticated cellular models and computational modeling, have paved the way for more accurate and efficient DDI assessments. Emerging methodologies, such as organoids, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI), demonstrate significant potential in this field. A powerful and increasingly adopted approach is the integration of in vitro data with in silico modeling, which can lead to better in vitro-in vivo extrapolation (IVIVE). This review provides a comprehensive overview of both conventional and novel strategies for DDI predictions, highlighting their strengths and limitations. Equipping researchers with a structured framework for selecting optimal methodologies improves safety and efficacy evaluation and regulatory decision-making and deepens the understanding of DDIs.

摘要

药物的吸收、分布、代谢和排泄(ADME)特征描述对于准确确定其安全性和有效性至关重要。多重用药的日益普遍显著增加了药物相互作用(DDIs)的风险。这些相互作用可导致药物暴露改变,可能影响疗效或增加药物不良反应(ADRs)的风险,从而引发重大的临床和监管问题。评估潜在药物相互作用的传统方法严重依赖体外模型,包括酶分析和转运体研究。虽然这些方法不可或缺,但在可扩展性、成本以及预测复杂相互作用的能力方面存在固有局限性。分析技术的最新进展,特别是更复杂的细胞模型和计算模型的开发,为更准确、高效的药物相互作用评估铺平了道路。新兴方法,如意器官、基于生理的药代动力学(PBPK)建模和人工智能(AI),在该领域显示出巨大潜力。一种强大且越来越被采用的方法是将体外数据与计算机模拟建模相结合,这可以实现更好的体外-体内外推(IVIVE)。本综述全面概述了药物相互作用预测的传统和新策略,突出了它们的优势和局限性。为研究人员提供一个选择最佳方法的结构化框架,有助于改善安全性和有效性评估以及监管决策,并加深对药物相互作用的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5951/12195914/b3941bd5a25c/pharmaceutics-17-00747-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5951/12195914/fc998955884c/pharmaceutics-17-00747-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5951/12195914/c05edd8f2933/pharmaceutics-17-00747-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5951/12195914/b3941bd5a25c/pharmaceutics-17-00747-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5951/12195914/fc998955884c/pharmaceutics-17-00747-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5951/12195914/c05edd8f2933/pharmaceutics-17-00747-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5951/12195914/b3941bd5a25c/pharmaceutics-17-00747-g003.jpg

相似文献

[1]
A Review on New Frontiers in Drug-Drug Interaction Predictions and Safety Evaluations with In Vitro Cellular Models.

Pharmaceutics. 2025-6-6

[2]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[3]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[4]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[6]
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.

J Health Organ Manag. 2025-6-30

[7]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[8]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[9]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[10]
Redefining Mentorship in Medical Education with Artificial Intelligence: A Delphi Study on the Feasibility and Implications.

Teach Learn Med. 2025-6-18

本文引用的文献

[1]
Inhibitory effect of carvedilol on bedaquiline metabolism and .

PeerJ. 2025-4-30

[2]
Cannabidiol metabolism : the role of antiseizure medications and CYP2C19 genotypes.

Xenobiotica. 2025-3

[3]
A phase 1, randomized, crossover trial to assess the effect of itraconazole on the pharmacokinetics of dordaviprone in healthy adults.

Br J Clin Pharmacol. 2025-4-27

[4]
iPSC-derived and Patient-Derived Organoids: Applications and challenges in scalability and reproducibility as pre-clinical models.

Curr Res Toxicol. 2024-10-2

[5]
Artificial Intelligence Models and Tools for the Assessment of Drug-Herb Interactions.

Pharmaceuticals (Basel). 2025-2-20

[6]
Static Versus Dynamic Model Predictions of Competitive Inhibitory Metabolic Drug-Drug Interactions via Cytochromes P450: One Step Forward and Two Steps Backwards.

Clin Pharmacokinet. 2025-1

[7]
Notable drug-drug interaction between omeprazole and voriconazole in CYP2C19 *1 and *2 (rs4244285, 681G>A) alleles .

Xenobiotica. 2024-10

[8]
Patient-derived organoid models to decode liver pathophysiology.

Trends Endocrinol Metab. 2025-3

[9]
Cytochrome P450-mediated metabolic interactions between donepezil and tadalafil in human liver microsomes.

Toxicol In Vitro. 2024-10

[10]
A Decade of Organoid Research: Progress and Challenges in the Field of Organoid Technology.

ACS Omega. 2024-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索