Marques Lara, Vale Nuno
PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
Pharmaceutics. 2025 Jun 6;17(6):747. doi: 10.3390/pharmaceutics17060747.
The characterization of a drug's ADME (absorption, distribution, metabolism, and excretion) profile is crucial for accurately determining its safety and efficacy. The rising prevalence of polypharmacy has significantly increased the risk of drug-drug interactions (DDIs). These interactions can lead to altered drug exposure, potentially compromising efficacy or increasing the risk of adverse drug reactions (ADRs), thereby posing significant clinical and regulatory concerns. Traditional methods for assessing potential DDIs rely heavily on in vitro models, including enzymatic assays and transporter studies. While indispensable, these approaches have inherent limitations in scalability, cost, and ability to predict complex interactions. Recent advancements in analytical technologies, particularly the development of more sophisticated cellular models and computational modeling, have paved the way for more accurate and efficient DDI assessments. Emerging methodologies, such as organoids, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI), demonstrate significant potential in this field. A powerful and increasingly adopted approach is the integration of in vitro data with in silico modeling, which can lead to better in vitro-in vivo extrapolation (IVIVE). This review provides a comprehensive overview of both conventional and novel strategies for DDI predictions, highlighting their strengths and limitations. Equipping researchers with a structured framework for selecting optimal methodologies improves safety and efficacy evaluation and regulatory decision-making and deepens the understanding of DDIs.
药物的吸收、分布、代谢和排泄(ADME)特征描述对于准确确定其安全性和有效性至关重要。多重用药的日益普遍显著增加了药物相互作用(DDIs)的风险。这些相互作用可导致药物暴露改变,可能影响疗效或增加药物不良反应(ADRs)的风险,从而引发重大的临床和监管问题。评估潜在药物相互作用的传统方法严重依赖体外模型,包括酶分析和转运体研究。虽然这些方法不可或缺,但在可扩展性、成本以及预测复杂相互作用的能力方面存在固有局限性。分析技术的最新进展,特别是更复杂的细胞模型和计算模型的开发,为更准确、高效的药物相互作用评估铺平了道路。新兴方法,如意器官、基于生理的药代动力学(PBPK)建模和人工智能(AI),在该领域显示出巨大潜力。一种强大且越来越被采用的方法是将体外数据与计算机模拟建模相结合,这可以实现更好的体外-体内外推(IVIVE)。本综述全面概述了药物相互作用预测的传统和新策略,突出了它们的优势和局限性。为研究人员提供一个选择最佳方法的结构化框架,有助于改善安全性和有效性评估以及监管决策,并加深对药物相互作用的理解。
Acc Chem Res. 2025-6-17
Cochrane Database Syst Rev. 2017-12-22
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
J Health Organ Manag. 2025-6-30
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2018-2-6
Health Technol Assess. 2001
PeerJ. 2025-4-30
Pharmaceuticals (Basel). 2025-2-20
Trends Endocrinol Metab. 2025-3