文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚乙二醇-聚己内酯纳米颗粒提高阿卡拉布替尼的口服生物利用度:聚合物亲脂性和亲水性对大鼠体内理化性质及性能的影响

mPEG-PCL Nanoparticles to Improve Oral Bioavailability of Acalabrutinib: Effect of Polymer Lipophilicity and Hydrophilicity on Physicochemical Properties and In Vivo Performance in Rats.

作者信息

Sinha Swagata, Ravi Punna Rao, Rashmi Sahadevan Rajesh, Szeleszczuk Łukasz

机构信息

Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Pilani 500078, Telangana, India.

Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland.

出版信息

Pharmaceutics. 2025 Jun 13;17(6):774. doi: 10.3390/pharmaceutics17060774.


DOI:10.3390/pharmaceutics17060774
PMID:40574086
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12197210/
Abstract

This research focuses on the development and optimization of polymer-lipid hybrid nanoparticles (PLHNs) using two grades of mPEG-PCL co-polymers in combination with DPPC and lecithin to address the biopharmaceutical challenges of acalabrutinib (ACP), a selective treatment for different hematological malignancies. : Variations in the mPEG-to-ε-caprolactone ratio influenced both the molecular weight (Mw) of the synthesized co-polymers and their aqueous phase affinity. The ACP-loaded PLHNs (ACP-PLHNs) were optimized using a circumscribed central composite design. The in vivo studies were performed in Wistar rats. : The lipophilic mPEG-PCL (Mw = 9817.67 Da) resulted in PLHNs with a particle size of 155.91 nm and 40.08% drug loading, while the hydrophilic mPEG-PCL (Mw = 23,615.84 Da) yielded PLHNs with a relatively larger size (223.46 nm) and relatively higher drug loading (46.59%). The drug release profiles were polymer-grade dependent: lipophilic ACP-PLHNs (ACP-PLHNs) sustained release up to 30 h in pH 7.2 buffer, while hydrophilic ACP-PLHNs (ACP-PLHNs) completed release within 24 h. Stability studies showed greater stability for ACP-PLHNs, likely due to reduced molecular rearrangement from the chemically stable lipophilic co-polymer. : Oral administration of both formulations exhibited a 2-fold ( < 0.001) improvement in the C and AUC and a 3.9-fold ( < 0.001) increase in the relatively oral bioavailability compared to the conventional ACP suspension in male wistar rats.

摘要

本研究聚焦于使用两种不同等级的甲氧基聚乙二醇-聚己内酯(mPEG-PCL)共聚物与二棕榈酰磷脂酰胆碱(DPPC)和卵磷脂相结合,来开发和优化聚合物-脂质杂化纳米颗粒(PLHNs),以应对阿卡替尼(ACP)这一针对不同血液系统恶性肿瘤的选择性治疗药物所面临的生物制药挑战。mPEG与ε-己内酯比例的变化影响了合成共聚物的分子量(Mw)及其水相亲和力。载有ACP的PLHNs(ACP-PLHNs)通过限定的中心复合设计进行了优化。体内研究在Wistar大鼠中进行。亲脂性的mPEG-PCL(Mw = 9817.67 Da)制得的PLHNs粒径为155.91 nm,载药量为40.08%,而亲水性的mPEG-PCL(Mw = 23615.84 Da)制得的PLHNs尺寸相对较大(223.46 nm),载药量相对较高(46.59%)。药物释放曲线取决于聚合物等级:亲脂性的ACP-PLHNs在pH 7.2缓冲液中可持续释放长达30小时,而亲水性的ACP-PLHNs在24小时内完成释放。稳定性研究表明ACP-PLHNs具有更高的稳定性,这可能是由于化学稳定的亲脂性共聚物减少了分子重排。与雄性Wistar大鼠中的传统ACP悬浮液相比,两种制剂的口服给药在C和AUC方面均有2倍的改善(<0.001),相对口服生物利用度提高了3.9倍(<0.001)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/82fe7fbc9b80/pharmaceutics-17-00774-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/3497b0315f96/pharmaceutics-17-00774-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/82b079c079bb/pharmaceutics-17-00774-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/8b995e34cbb5/pharmaceutics-17-00774-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/91812fbb2728/pharmaceutics-17-00774-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/2ab79b94a52e/pharmaceutics-17-00774-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/e6f680647087/pharmaceutics-17-00774-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/f8c4f4a2f244/pharmaceutics-17-00774-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/78e787ec522b/pharmaceutics-17-00774-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/76398bae24d2/pharmaceutics-17-00774-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/833f2ca053dc/pharmaceutics-17-00774-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/8319ee459f2a/pharmaceutics-17-00774-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/a2dc6ba6fafa/pharmaceutics-17-00774-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/014b033fa9de/pharmaceutics-17-00774-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/4fc3c0fc02a8/pharmaceutics-17-00774-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/82fe7fbc9b80/pharmaceutics-17-00774-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/3497b0315f96/pharmaceutics-17-00774-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/82b079c079bb/pharmaceutics-17-00774-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/8b995e34cbb5/pharmaceutics-17-00774-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/91812fbb2728/pharmaceutics-17-00774-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/2ab79b94a52e/pharmaceutics-17-00774-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/e6f680647087/pharmaceutics-17-00774-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/f8c4f4a2f244/pharmaceutics-17-00774-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/78e787ec522b/pharmaceutics-17-00774-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/76398bae24d2/pharmaceutics-17-00774-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/833f2ca053dc/pharmaceutics-17-00774-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/8319ee459f2a/pharmaceutics-17-00774-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/a2dc6ba6fafa/pharmaceutics-17-00774-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/014b033fa9de/pharmaceutics-17-00774-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/4fc3c0fc02a8/pharmaceutics-17-00774-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5491/12197210/82fe7fbc9b80/pharmaceutics-17-00774-g015.jpg

相似文献

[1]
mPEG-PCL Nanoparticles to Improve Oral Bioavailability of Acalabrutinib: Effect of Polymer Lipophilicity and Hydrophilicity on Physicochemical Properties and In Vivo Performance in Rats.

Pharmaceutics. 2025-6-13

[2]
Enhanced delivery of podophyllotoxin for hepatocellular carcinoma therapy using polymersome as an anticancer delivery platform.

J Biomater Sci Polym Ed. 2025-6-19

[3]
Assessment of ethnic differences in pharmacokinetics and clinical responses of acalabrutinib between Chinese and White patients with B-cell malignancies.

Br J Clin Pharmacol. 2025-7

[4]
Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.

Cochrane Database Syst Rev. 2017-12-28

[5]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[6]
Physical exercise training interventions for children and young adults during and after treatment for childhood cancer.

Cochrane Database Syst Rev. 2016-3-31

[7]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[8]
Comparative Efficacy of Acalabrutinib in Frontline Treatment of Chronic Lymphocytic Leukemia: A Systematic Review and Network Meta-analysis.

Clin Ther. 2020-10

[9]
Oral morphine for cancer pain.

Cochrane Database Syst Rev. 2016-4-22

[10]
Non-contraceptive oestrogen-containing preparations for controlling symptoms of premenstrual syndrome.

Cochrane Database Syst Rev. 2017-3-3

本文引用的文献

[1]
Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia.

Discov Nano. 2024-12-30

[2]
Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics.

Mol Cancer. 2023-10-3

[3]
Lipid-Polymer Hybrid Nanosystems: A Rational Fusion for Advanced Therapeutic Delivery.

J Funct Biomater. 2023-8-23

[4]
Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges.

Int J Biol Macromol. 2022-7-31

[5]
DDAB cationic lipid-mPEG, PCL copolymer hybrid nano-carrier synthesis and application for delivery of siRNA targeting IGF-1R into breast cancer cells.

Clin Transl Oncol. 2021-6

[6]
Physical Properties of Nanoparticles That Result in Improved Cancer Targeting.

J Oncol. 2020-7-13

[7]
Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene.

Int J Pharm. 2020-10-15

[8]
Hyaluronic Acid Capped, Irinotecan and Gene Co-Loaded Lipid-Polymer Hybrid Nanocarrier-Based Combination Therapy Platform for Colorectal Cancer.

Drug Des Devel Ther. 2020

[9]
Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part I. Mechanistic modelling of drug product dissolution to derive a P-PSD for PBPK model input.

Eur J Pharm Biopharm. 2019-7-12

[10]
Oral delivery of indinavir using mPEG-PCL nanoparticles: preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation.

Artif Cells Nanomed Biotechnol. 2019-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索