文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脂质-聚合物杂化纳米系统:用于先进治疗递送的合理融合。

Lipid-Polymer Hybrid Nanosystems: A Rational Fusion for Advanced Therapeutic Delivery.

作者信息

Jain Shweta, Kumar Mudit, Kumar Pushpendra, Verma Jyoti, Rosenholm Jessica M, Bansal Kuldeep K, Vaidya Ankur

机构信息

Sir Madan Lal Institute of Pharmacy, Etawah 206310, India.

Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India.

出版信息

J Funct Biomater. 2023 Aug 23;14(9):437. doi: 10.3390/jfb14090437.


DOI:10.3390/jfb14090437
PMID:37754852
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10531762/
Abstract

Lipid nanoparticles (LNPs) are spherical vesicles composed of ionizable lipids that are neutral at physiological pH. Despite their benefits, unmodified LNP drug delivery systems have substantial drawbacks, including a lack of targeted selectivity, a short blood circulation period, and in vivo instability. lipid-polymer hybrid nanoparticles (LPHNPs) are the next generation of nanoparticles, having the combined benefits of polymeric nanoparticles and liposomes. LPHNPs are being prepared from both natural and synthetic polymers with various techniques, including one- or two-step methods, emulsification solvent evaporation (ESE) method, and the nanoprecipitation method. Varieties of LPHNPs, including monolithic hybrid nanoparticles, core-shell nanoparticles, hollow core-shell nanoparticles, biomimetic lipid-polymer hybrid nanoparticles, and polymer-caged liposomes, have been investigated for various drug delivery applications. However, core-shell nanoparticles having a polymeric core surrounded by a highly biocompatible lipid shell are the most commonly explored LPHNPs for the treatment of various diseases. In this review, we will shed light on the composition, methods of preparation, classification, surface functionalization, release mechanism, advantages and disadvantages, patents, and clinical trials of LPHNPs, with an emphasis on core-shell-structured LPHNPs.

摘要

脂质纳米颗粒(LNPs)是由在生理pH值下呈中性的可电离脂质组成的球形囊泡。尽管有其优点,但未修饰的LNP药物递送系统存在诸多缺点,包括缺乏靶向选择性、血液循环时间短和体内不稳定性。脂质-聚合物杂化纳米颗粒(LPHNPs)是下一代纳米颗粒,兼具聚合物纳米颗粒和脂质体的优点。LPHNPs正在通过多种技术由天然和合成聚合物制备而成,包括一步或两步法、乳化溶剂蒸发(ESE)法和纳米沉淀法。已经针对各种药物递送应用研究了多种LPHNPs,包括整体杂化纳米颗粒、核壳纳米颗粒、中空核壳纳米颗粒、仿生脂质-聚合物杂化纳米颗粒和聚合物包裹脂质体。然而,具有被高度生物相容性脂质壳包围的聚合物核的核壳纳米颗粒是治疗各种疾病时最常研究的LPHNPs。在这篇综述中,我们将阐明LPHNPs的组成、制备方法、分类、表面功能化、释放机制、优缺点、专利和临床试验,重点是核壳结构的LPHNPs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/29db1fea499e/jfb-14-00437-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/4fff27bd3874/jfb-14-00437-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/2b335e2ca61e/jfb-14-00437-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/3efa75aaae63/jfb-14-00437-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/e477b5a934b9/jfb-14-00437-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/c58343f3c3e5/jfb-14-00437-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/29db1fea499e/jfb-14-00437-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/4fff27bd3874/jfb-14-00437-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/2b335e2ca61e/jfb-14-00437-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/3efa75aaae63/jfb-14-00437-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/e477b5a934b9/jfb-14-00437-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/c58343f3c3e5/jfb-14-00437-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea59/10531762/29db1fea499e/jfb-14-00437-g006.jpg

相似文献

[1]
Lipid-Polymer Hybrid Nanosystems: A Rational Fusion for Advanced Therapeutic Delivery.

J Funct Biomater. 2023-8-23

[2]
Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics.

Mol Cancer. 2023-10-3

[3]
Investigating the effectiveness of Difluprednate-Loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery.

Int J Pharm. 2023-6-10

[4]
Development and In Vitro Evaluation of Crizotinib-Loaded Lipid-Polymer Hybrid Nanoparticles Using Box-Behnken Design in Non-small Cell Lung Cancer.

AAPS PharmSciTech. 2023-9-2

[5]
Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives.

Int J Nanomedicine. 2019-3-19

[6]
Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform.

Nanomedicine. 2012-12-20

[7]
Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery.

Int J Pharm. 2020-5-15

[8]
Core Shell Lipid-Polymer Hybrid Nanoparticles for Oral Bioavailability Enhancement of Ibrutinib via Lymphatic Uptake.

AAPS PharmSciTech. 2023-6-23

[9]
EGF-functionalized lipid-polymer hybrid nanoparticles of 5-fluorouracil and sulforaphane with enhanced bioavailability and anticancer activity against colon carcinoma.

Biotechnol Appl Biochem. 2022-10

[10]
Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery - comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution.

Drug Deliv. 2017-11

引用本文的文献

[1]
Nanoparticles for Cancer Immunotherapy: Innovations and Challenges.

Pharmaceuticals (Basel). 2025-7-22

[2]
Advanced drug delivery systems for oral squamous cell carcinoma: a comprehensive review of nanotechnology-based and other innovative approaches.

Front Drug Deliv. 2025-6-27

[3]
Combination Therapy Using Phytochemicals and PARP Inhibitors in Hybrid Nanocarriers: An Optimistic Approach for the Management of Colon Cancer.

Int J Mol Sci. 2025-7-30

[4]
Topical and transdermal lipid-polymer hybrid nanoparticles (LPN): an integration in advancing dermatological treatments.

Drug Deliv Transl Res. 2025-8-13

[5]
Phospholipid-Drug Conjugates in Cancer Therapy: Emerging Paradigms and Future Directions.

AAPS PharmSciTech. 2025-7-14

[6]
Advances in nanoparticle-based doxorubicin delivery: precision strategies for targeted treatment of triple-negative breast cancer.

Discov Nano. 2025-7-14

[7]
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery.

Pharmaceutics. 2025-6-19

[8]
mPEG-PCL Nanoparticles to Improve Oral Bioavailability of Acalabrutinib: Effect of Polymer Lipophilicity and Hydrophilicity on Physicochemical Properties and In Vivo Performance in Rats.

Pharmaceutics. 2025-6-13

[9]
Oral Bioavailability Enhancement of Anti-Cancer Drugs Through Lipid Polymer Hybrid Nanoparticles.

Pharmaceutics. 2025-3-17

[10]
Advantages and challenges of polymer-lipid hybrid nanoparticles for the delivery of biotech drugs.

Nanomedicine (Lond). 2025-4

本文引用的文献

[1]
Highlights on Cell-Penetrating Peptides and Polymer-Lipid Hybrid Nanoparticle: Overview and Therapeutic Applications for Targeted Anticancer Therapy.

AAPS PharmSciTech. 2023-5-24

[2]
Formulation development of lipid polymer hybrid nanoparticles of doxorubicin and its and computational evaluation.

Front Pharmacol. 2023-2-7

[3]
Screening strategies for surface modification of lipid-polymer hybrid nanoparticles.

Int J Pharm. 2022-8-25

[4]
Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development.

Pharmaceutics. 2022-4-11

[5]
Immunopolymer Lipid Nanoparticles for Delivery of Macromolecules to Antigen-Expressing Cells.

ACS Appl Bio Mater. 2020-12-21

[6]
Novel Ellipsoid Chitosan-Phthalate Lecithin Nanoparticles for siRNA Delivery.

Front Bioeng Biotechnol. 2021-7-28

[7]
Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement.

ACS Nano. 2021-11-23

[8]
LipoParticles: Lipid-Coated PLA Nanoparticles Enhanced In Vitro mRNA Transfection Compared to Liposomes.

Pharmaceutics. 2021-3-12

[9]
Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy.

Nanomedicine. 2021-4

[10]
Cartilage-targeting ultrasmall lipid-polymer hybrid nanoparticles for the prevention of cartilage degradation.

Bioeng Transl Med. 2020-9-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索