Kurillová Antónia, Kvítek Libor, Panáček Aleš
Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. Listopadu 12, 77900 Olomouc, Czech Republic.
Pharmaceutics. 2025 Jun 16;17(6):783. doi: 10.3390/pharmaceutics17060783.
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. : One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. : Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. : By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. : This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies.
医学研究处于应对全球紧迫挑战的前沿,包括预防和治疗心血管疾病、自身免疫性疾病、肿瘤疾病、神经退行性疾病以及病原体对抗生素日益增强的耐药性。利用先进的医学方法和前沿技术、基于结构的药物设计以及个性化医疗来理解这些疾病背后的分子机制,对于开发有效的治疗方法,特别是抗癌治疗方法至关重要。:癌症在细胞水平的关键驱动因素之一是蛋白质酶的异常活性,特别是丝氨酸、苏氨酸或酪氨酸残基通过一种称为磷酸化的过程产生的异常活性。虽然酪氨酸激酶介导的磷酸化在细胞总磷酸化中占比很小,但其失调与癌症发生和肿瘤进展密切相关。:小分子抑制剂,如伊马替尼或厄洛替尼,旨在阻止这一过程,恢复细胞平衡并提供靶向治疗方法。然而,挑战依然存在,包括这些疗法常见的耐药性和严重副作用。纳米医学具有克服这些局限性的变革潜力。:通过利用纳米材料的独特性质,可以实现精确的药物递送,增强在靶位点的积累,并提高治疗效果。实例包括基于纳米颗粒的酪氨酸激酶抑制剂递送系统,以及将纳米材料与光热或光动力疗法相结合以提高治疗效果。将纳米医学与传统治疗方法相结合有望实现协同增效,为更有效的癌症管理带来希望和前景。:本综述深入探讨了在理解酪氨酸激酶活性、其抑制机制以及纳米医学的创新整合以彻底改变癌症治疗策略方面的最新进展。
Neural Regen Res. 2025-6-19
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2012-12-12
NIH Consens State Sci Statements. 2002
Health Technol Assess. 2001
Mol Biol Rep. 2025-6-21
Int J Biol Macromol. 2025-4
Crit Rev Oncol Hematol. 2024-10
Front Bioeng Biotechnol. 2024-7-11
Int J Mol Sci. 2024-5-17