Guo Qianyu, Zhang Miaomiao, Zheng Jinyao, Li Zongjia, Zhang Yuanhao, Chen Ying, Chen Yu, Jiang Xiue, Tang Jilin
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Adv Healthc Mater. 2025 Jun 26:e2500656. doi: 10.1002/adhm.202500656.
Chronic wounds infected with drug-resistant bacteria present a formidable clinical challenge, exacerbated by antibiotic overuse that severely compromises healing. Herein, a multifunctional therapeutic hydrogel wound dressing is developed to address these challenges. This advanced nanocomposite hydrogel incorporates cerium dioxide-doped MXene nanosheets (MXene@CeO) within a glycidyl methacrylate-modified gelatin (GMA-Gelatin) matrix and crosslinked into a hydrogel under UV irradiation (GMAG-GEL), forming a near-infrared (NIR)-responsive material (MXene@CeO/GMAG-GEL). This incorporation enhances the mechanical strength of the hydrogel and creates a protective microenvironment for wound repair. In the acidic environment of bacterial infections, MXene@CeO/GMAG-GEL facilitates the electrostatic capture of bacteria. Synergizing with its photothermal capability, it exhibits exceptional antibacterial activity, effectively killing drug-resistant bacteria and disrupting bacterial biofilms. After eradicating the infection, MXene@CeO/GMAG-GEL further alleviates oxidative stress, promotes cell migration and angiogenesis, and induces macrophage polarization toward an anti-inflammatory phenotype. In vivo studies confirmed MXene@CeO/GMAG-GEL significantly accelerates wound closure and tissue regeneration. This work overcomes the key challenges of antibiotic resistance, persistent inflammation, and impaired tissue regeneration, presents a comprehensive therapeutic strategy for drug-resistant bacterial wound infections through a single multifunctional platform.
感染耐药菌的慢性伤口带来了严峻的临床挑战,抗生素的过度使用使这一挑战更加恶化,严重影响了伤口愈合。在此,开发了一种多功能治疗性水凝胶伤口敷料来应对这些挑战。这种先进的纳米复合水凝胶在甲基丙烯酸缩水甘油酯改性明胶(GMA-明胶)基质中掺入了二氧化铈掺杂的MXene纳米片(MXene@CeO),并在紫外线照射下交联成水凝胶(GMAG-GEL),形成了一种近红外(NIR)响应材料(MXene@CeO/GMAG-GEL)。这种掺入增强了水凝胶的机械强度,并为伤口修复创造了一个保护性微环境。在细菌感染的酸性环境中,MXene@CeO/GMAG-GEL有助于通过静电捕获细菌。与其光热能力协同作用,它表现出卓越的抗菌活性,能有效杀死耐药菌并破坏细菌生物膜。在根除感染后,MXene@CeO/GMAG-GEL进一步减轻氧化应激,促进细胞迁移和血管生成,并诱导巨噬细胞向抗炎表型极化。体内研究证实,MXene@CeO/GMAG-GEL能显著加速伤口闭合和组织再生。这项工作克服了抗生素耐药性、持续性炎症和组织再生受损等关键挑战,通过一个单一的多功能平台为耐药菌伤口感染提供了一种全面的治疗策略。