癌症免疫治疗新抗原预测的进展与挑战
Advances and challenges in neoantigen prediction for cancer immunotherapy.
作者信息
Zhang Yi, Chen Ting-Ting, Li Xiong, Lan Ai-Lin, Ji Peng-Fei, Zhu Ya-Juan, Ma Xue-Yao
机构信息
The First Clinical Medical College of Lanzhou University, Lanzhou, China.
Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
出版信息
Front Immunol. 2025 Jun 12;16:1617654. doi: 10.3389/fimmu.2025.1617654. eCollection 2025.
Neoantigens, derived from tumor-specific mutations, are promising targets of cancer immunotherapy by eliciting tumor-specific T-cell responses while sparing normal cells. Accurate neoantigen prediction relies on immunogenomics and immunopeptidomics. Immunogenomics identifies tumor-specific mutations via next-generation sequencing. Immunopeptidomics detects MHC-presented peptides using mass spectrometry. Integrating these two methods enhances prediction accuracy but faces challenges due to tumor heterogeneity, HLA diversity, and immune evasion. Future advancements will focus on dynamic tumor microenvironment monitoring, multi-omics integration, improved computational models and algorithms to refine neoantigen prediction, and developing optimized personalized vaccines.
新抗原源自肿瘤特异性突变,通过引发肿瘤特异性T细胞反应同时避免损伤正常细胞,成为癌症免疫治疗的有前景的靶点。准确的新抗原预测依赖于免疫基因组学和免疫肽组学。免疫基因组学通过下一代测序识别肿瘤特异性突变。免疫肽组学利用质谱检测MHC呈递的肽段。整合这两种方法可提高预测准确性,但由于肿瘤异质性、HLA多样性和免疫逃逸而面临挑战。未来的进展将集中在动态肿瘤微环境监测、多组学整合、改进计算模型和算法以优化新抗原预测,以及开发优化的个性化疫苗。