Huber Florian, Arnaud Marion, Stevenson Brian J, Michaux Justine, Benedetti Fabrizio, Thevenet Jonathan, Bobisse Sara, Chiffelle Johanna, Gehert Talita, Müller Markus, Pak HuiSong, Krämer Anne I, Altimiras Emma Ricart, Racle Julien, Taillandier-Coindard Marie, Muehlethaler Katja, Auger Aymeric, Saugy Damien, Murgues Baptiste, Benyagoub Abdelkader, Gfeller David, Laniti Denarda Dangaj, Kandalaft Lana, Rodrigo Blanca Navarro, Bouchaab Hasna, Tissot Stephanie, Coukos George, Harari Alexandre, Bassani-Sternberg Michal
Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
Nat Biotechnol. 2024 Oct 11. doi: 10.1038/s41587-024-02420-y.
The accurate identification and prioritization of antigenic peptides is crucial for the development of personalized cancer immunotherapies. Publicly available pipelines to predict clinical neoantigens do not allow direct integration of mass spectrometry immunopeptidomics data, which can uncover antigenic peptides derived from various canonical and noncanonical sources. To address this, we present an end-to-end clinical proteogenomic pipeline, called NeoDisc, that combines state-of-the-art publicly available and in-house software for immunopeptidomics, genomics and transcriptomics with in silico tools for the identification, prediction and prioritization of tumor-specific and immunogenic antigens from multiple sources, including neoantigens, viral antigens, high-confidence tumor-specific antigens and tumor-specific noncanonical antigens. We demonstrate the superiority of NeoDisc in accurately prioritizing immunogenic neoantigens over recent prioritization pipelines. We showcase the various features offered by NeoDisc that enable both rule-based and machine-learning approaches for personalized antigen discovery and neoantigen cancer vaccine design. Additionally, we demonstrate how NeoDisc's multiomics integration identifies defects in the cellular antigen presentation machinery, which influence the heterogeneous tumor antigenic landscape.
准确识别抗原肽并确定其优先级对于个性化癌症免疫疗法的开发至关重要。用于预测临床新抗原的公开可用流程不允许直接整合质谱免疫肽组学数据,而该数据可以揭示源自各种经典和非经典来源的抗原肽。为了解决这个问题,我们提出了一种端到端的临床蛋白质基因组学流程,称为NeoDisc,它将用于免疫肽组学、基因组学和转录组学的最先进的公开可用软件和内部软件与计算机工具相结合,用于从多种来源(包括新抗原、病毒抗原、高置信度肿瘤特异性抗原和肿瘤特异性非经典抗原)中识别、预测肿瘤特异性和免疫原性抗原并确定其优先级。我们证明了NeoDisc在准确确定免疫原性新抗原优先级方面优于最近的优先级流程。我们展示了NeoDisc提供的各种功能,这些功能支持基于规则和机器学习方法进行个性化抗原发现和新抗原癌症疫苗设计。此外,我们展示了NeoDisc的多组学整合如何识别细胞抗原呈递机制中的缺陷,这些缺陷会影响异质性肿瘤抗原格局。