Suppr超能文献

通过稀疏反馈实现脑网络的内部控制

Internal control of brain networks via sparse feedback.

作者信息

Mitrai Ilias, Jones Victoria O, Dewantoro Harman, Stamoulis Catherine, Daoutidis Prodromos

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA.

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

AIChE J. 2023 Apr;69(4). doi: 10.1002/aic.18061. Epub 2023 Jan 30.

Abstract

The human brain is a complex system whose function depends on interactions between neurons and their ensembles across scales of organization. These interactions are restricted by anatomical and energetic constraints, and facilitate information processing and integration in response to cognitive demands. In this work, we considered the brain as a closed loop dynamic system under sparse feedback control. This controller design considered simultaneously control performance and feedback (communication) cost. As proof of principle, we applied this framework to structural and functional brain networks. Under high feedback cost only a small number of highly connected network nodes were controlled, which suggests that a small subset of brain regions may play a central role in the control of neural circuits, through a tradeoff between performance and communication cost.

摘要

人类大脑是一个复杂的系统,其功能取决于神经元及其整体在不同组织尺度上的相互作用。这些相互作用受到解剖学和能量限制的约束,并有助于根据认知需求进行信息处理和整合。在这项工作中,我们将大脑视为一个在稀疏反馈控制下的闭环动态系统。这种控制器设计同时考虑了控制性能和反馈(通信)成本。作为原理证明,我们将此框架应用于大脑的结构和功能网络。在高反馈成本的情况下,仅控制少量高度连接的网络节点,这表明一小部分脑区可能通过性能和通信成本之间的权衡,在神经回路的控制中发挥核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7935/12199838/579191cb9cef/nihms-2090774-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验