Marcos Diego, van de Vlasakker Robert, Athanasiadis Ioannis N, Bonnet Pierre, Goëau Hervé, Joly Alexis, Kissling W Daniel, Leblanc César, van Proosdij André S J, Panousis Konstantinos P
INRIA, TETIS, University of Montpellier Montpellier France.
University of Montpellier Montpellier France.
Appl Plant Sci. 2025 Jun 1;13(3):e70005. doi: 10.1002/aps3.70005. eCollection 2025 May-Jun.
Plant morphological traits, their observable characteristics, are fundamental to understanding the role played by each species within its ecosystem; however, compiling trait information for even a moderate number of species is a demanding task that may take experts years to accomplish. At the same time, online species descriptions contain massive amounts of information about morphological traits, but the lack of structure makes this source of data impossible to use at scale.
To overcome this, we propose to leverage recent advances in large language models and devise a mechanism for gathering and processing plant trait information in the form of unstructured textual descriptions, without manual curation.
We evaluate our approach by automatically replicating three manually created species-trait matrices. Our method found values for over half of all species-trait pairs, with an F1 score of over 75%.
Our results suggest that large-scale creation of structured trait databases from unstructured online text is now feasible due to the information extraction capabilities of large language models. However, the process is currently limited by the availability of textual descriptions that cover all traits of interest.
植物形态特征,即其可观察到的特性,对于理解每个物种在其生态系统中所起的作用至关重要;然而,即使是为数量适中的物种汇编特征信息也是一项艰巨的任务,可能需要专家数年时间才能完成。与此同时,在线物种描述包含了大量有关形态特征的信息,但缺乏结构化使其无法大规模使用。
为克服这一问题,我们建议利用大语言模型的最新进展,并设计一种机制,无需人工整理即可收集和处理非结构化文本描述形式的植物特征信息。
我们通过自动复制三个人工创建的物种 - 特征矩阵来评估我们的方法。我们的方法找到了所有物种 - 特征对中超过一半的值,F1分数超过75%。
我们的结果表明,由于大语言模型的信息提取能力,现在从非结构化在线文本大规模创建结构化特征数据库是可行的。然而,目前该过程受到涵盖所有感兴趣特征的文本描述可用性的限制。