Ligorio Raphael F, Dos Santos Leonardo H R, Krawczuk Anna
Institute of Inorganic Chemistry, University of Goettingen, Goettingen, Germany.
Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
J Comput Chem. 2025 Jun 30;46(17):e70158. doi: 10.1002/jcc.70158.
Despite its name, the dipole interaction model (DIM) serves not only to adjust dipole moments due to atomic interactions but also to assess polarizabilities. Traditionally, polarizability calculations via DIM rely on matrix inversion, posing constraints on memory usage and computational time. Recent implementations have shown significant performance boosts by employing an iterative inversion solver, albeit reducing accuracy. In this paper, we present a direct approach for computing polarizabilities via iterative cycles, eliminating the need for matrix inversion. This allows for scaling up the model to hundreds of thousands of atoms without sacrificing precision, as often happens when simplifying the standard inversion procedure to reduce computational costs. Additionally, we have addressed memory issues associated with storing extensive arrays in standard implementations. Our advancement holds promise for diverse applications, providing an efficient method for exploring polarizabilities in various systems.
尽管名为偶极相互作用模型(DIM),但它不仅用于调整由于原子相互作用产生的偶极矩,还用于评估极化率。传统上,通过DIM进行极化率计算依赖于矩阵求逆,这对内存使用和计算时间构成了限制。最近的实现通过采用迭代求逆求解器显著提高了性能,尽管降低了精度。在本文中,我们提出了一种通过迭代循环计算极化率的直接方法,无需矩阵求逆。这使得该模型能够扩展到数十万个原子而不牺牲精度,而简化标准求逆过程以降低计算成本时常常会出现精度损失的情况。此外,我们解决了标准实现中与存储大量数组相关的内存问题。我们的进展为各种应用带来了希望,提供了一种在各种系统中探索极化率的有效方法。