ARC Centre for Engineered Quantum Systems (EQUS), School of Mathematics and Physics, The University of Queensland, Brisbane, Australia.
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
Sci Rep. 2022 Feb 7;12(1):1995. doi: 10.1038/s41598-022-05586-0.
The structural dynamics of macromolecules is important for most microbiological processes, from protein folding to the origins of neurodegenerative disorders. Noninvasive measurements of these dynamics are highly challenging. Recently, optical sensors have been shown to allow noninvasive time-resolved measurements of the dynamic polarizability of single-molecules. Here we introduce a method to efficiently predict the dynamic polarizability from the atomic configuration of a given macromolecule. This provides a means to connect the measured dynamic polarizability to the underlying structure of the molecule, and therefore to connect temporal measurements to structural dynamics. To illustrate the methodology we calculate the change in polarizability as a function of time based on conformations extracted from molecular dynamics simulations and using different conformations of motor proteins solved crystalographically. This allows us to quantify the magnitude of the changes in polarizablity due to thermal and functional motions.
生物大分子的结构动力学对大多数微生物过程都很重要,从蛋白质折叠到神经退行性疾病的起源。这些动力学的非侵入性测量极具挑战性。最近,光学传感器已被证明可以对单分子的动态极化率进行非侵入性的、时分辨的测量。在这里,我们介绍了一种从给定大分子的原子构型中有效预测动态极化率的方法。这为将测量的动态极化率与分子的基础结构联系起来提供了一种手段,从而将时间测量与结构动力学联系起来。为了说明这种方法,我们根据分子动力学模拟提取的构象并使用晶体学中解决的不同的马达蛋白构象,计算了极化率随时间的变化。这使我们能够量化由于热和功能运动引起的极化率变化的幅度。