Unlu Yazici Miray, Marron J S, Bakir-Gungor Burcu, Zou Fei, Yousef Malik
Department of Bioengineering, Abdullah Gül University, Kayseri, Turkey.
Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, North Carolina, United States of America.
PLoS One. 2025 Jun 27;20(6):e0326154. doi: 10.1371/journal.pone.0326154. eCollection 2025.
Breast Cancer (BRCA) is a heterogeneous disease, and it is one of the most prevalent cancer types among women. Developing effective treatment strategies that address diverse types of BRCA is crucial. Notably, among different BRCA molecular sub-types, Hormone Receptor negative (HR-) BRCA cases, especially Basal-like BRCA sub-types, lack estrogen and progesterone hormone receptors and they exhibit a higher tumor growth rate compared to HR+ cases. Improving survival time and predicting prognosis for distinct molecular profiles is substantial. In this study, we propose a novel approach called 3-Multi-Omics Network and Integration Tool (3Mont), which integrates various -omics data by applying a grouping function, detecting pro-groups, and assigning scores to each pro-group using Feature importance scoring (FIS) component. Following that, machine learning (ML) models are constructed based on the prominent pro-groups, which enable the extraction of promising biomarkers for distinguishing BRCA sub-types. Our tool allows users to analyze the collective behavior of features in each pro-group (biological groups) utilizing ML algorithms. In addition, by constructing the pro-groups and equalizing the feature numbers in each pro-group using the FIS component, this process achieves a significant 20% speedup over the 3Mint tool. Contrary to conventional methods, 3Mont generates networks that illustrate the interplay of the prominent biomarkers of different -omics data. Accordingly, exploring the concerted actions of features in pro-groups facilitates understanding the dynamics of the biomarkers within the generated networks and developing effective strategies for better cancer sub-type stratification. The 3Mont tool, along with all supporting materials, can be found at https://github.com/malikyousef/3Mont.git.
乳腺癌(BRCA)是一种异质性疾病,也是女性中最常见的癌症类型之一。制定针对不同类型BRCA的有效治疗策略至关重要。值得注意的是,在不同的BRCA分子亚型中,激素受体阴性(HR-)的BRCA病例,尤其是基底样BRCA亚型,缺乏雌激素和孕激素受体,与HR+病例相比,它们的肿瘤生长速度更高。提高不同分子特征的生存时间并预测预后非常重要。在本研究中,我们提出了一种名为3-多组学网络与整合工具(3Mont)的新方法,该方法通过应用分组函数、检测前组并使用特征重要性评分(FIS)组件为每个前组分配分数来整合各种组学数据。在此之后,基于突出的前组构建机器学习(ML)模型,这使得能够提取用于区分BRCA亚型的有前景的生物标志物。我们的工具允许用户利用ML算法分析每个前组(生物组)中特征的集体行为。此外,通过构建前组并使用FIS组件均衡每个前组中的特征数量,该过程比3Mint工具实现了显著20%的加速。与传统方法不同,3Mont生成的网络展示了不同组学数据的突出生物标志物之间的相互作用。因此,探索前组中特征的协同作用有助于理解生成网络中生物标志物的动态,并制定有效的策略以实现更好的癌症亚型分层。3Mont工具以及所有支持材料可在https://github.com/malikyousef/3Mont.git上找到。