Suppr超能文献

MonOri:用于单目三维目标检测的方向引导式透视-n-点算法

MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection.

作者信息

Yao Hongdou, Han Pengfei, Chen Jun, Wang Zheng, Qiu Yansheng, Wang Xiao, Wang Yimin, Chai Xiaoyu, Cao Chenglong, Jin Wei

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jun 27;PP. doi: 10.1109/TNNLS.2025.3577618.

Abstract

Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods tend to incorporate additional information such as pseudolabels to improve algorithm performance while overlooking the geometric relationship between the object's keypoints, resulting in low performance for occluded object detection. To address this issue, we find that introducing the orientation information of objects in the 3-D detection pipeline can help improve the detection performance of occluded objects. An orientation-guided perspective-n-point (PnP) for monocular 3-D object detection method named MonOri is presented in this article, which uses object's orientation to guide keypoints' optimization. Considering the existence of different deformation objects in the scene, we design the feature aggregation detection module (FADM), which consists of the feature focus fusion module (FFFM) and CondConv detection module (CCDM). First, FFFM can highlight signals from irregularly occluded objects, effectively modeling features of elongated and small-sized objects. This module enhances the model's ability to recognize elongated and small-sized objects in complex scenes. Then, the CCDM is designed to improve the network's ability to estimate object keypoints' location regression under occlusion conditions and minimize the network computational overhead. Finally, considering that the unoccluded portions of occluded objects are closely related to the orientation of the objects, an orientation-guided keypoints' selection module (OGKSM) is proposed to enhance the accuracy of objected optimization for keypoint positions and spatial location inference of the object. Experimental results indicate that the MonOri method achieves competitive results; it is also demonstrated that the orientation information is introduced in the PnP algorithm to estimate the object's spatial position that can mitigate the impact of occlusion on object detection, thus improving the recognition rate of occluded objects. Our code is available at https://github.com/DL-YHD/MonOri.

摘要

单目三维目标检测是自动驾驶领域一项具有挑战性的任务,并且已经取得了很大进展。然而,当前的单目图像方法倾向于纳入诸如伪标签等额外信息来提高算法性能,却忽略了物体关键点之间的几何关系,导致遮挡物体检测性能较低。为了解决这个问题,我们发现,在三维检测流程中引入物体的方向信息有助于提高遮挡物体的检测性能。本文提出了一种用于单目三维目标检测的方向引导透视n点(PnP)方法,即MonOri,该方法利用物体的方向来指导关键点的优化。考虑到场景中存在不同的变形物体,我们设计了特征聚合检测模块(FADM),它由特征聚焦融合模块(FFFM)和条件卷积检测模块(CCDM)组成。首先,FFFM可以突出来自不规则遮挡物体的信号,有效地对细长和小尺寸物体的特征进行建模。该模块增强了模型在复杂场景中识别细长和小尺寸物体的能力。然后,CCDM旨在提高网络在遮挡条件下估计物体关键点位置回归的能力,并最小化网络计算开销。最后,考虑到遮挡物体的未遮挡部分与物体的方向密切相关,提出了一种方向引导关键点选择模块(OGKSM),以提高物体关键点位置优化的准确性和物体空间位置推断的准确性。实验结果表明,MonOri方法取得了具有竞争力的结果;还证明了在PnP算法中引入方向信息来估计物体的空间位置,可以减轻遮挡对物体检测的影响,从而提高遮挡物体的识别率。我们的代码可在https://github.com/DL-YHD/MonOri获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验